SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wilbur Scott) srt2:(2002-2004)"

Search: WFRF:(Wilbur Scott) > (2002-2004)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Orlova, Anna (author)
  • Indirect Radiohalogenation of Targeting Proteins : Labelling Chemistry and Biological Characterisation
  • 2003
  • Doctoral thesis (other academic/artistic)abstract
    • In about half of all newly diagnosed cancer cases, conventional treatment is not adequately curative, mainly due to the failure of conventional techniques to find and kill residual cells and metastases, which might consist of only a few malignant cells, without causing unacceptable complications to healthy tissue. To solve the problem a more selective delivery of cytotoxic substances to tumour cells is needed. The approach applied here is called ‘tumour targeting’ and implies the use of biomolecules that recognise specific molecular structures on the malignant cell surface. Such molecules are then used for a selective transport of toxic agents to the cancer cells. The use of radionuclides as cytotoxic substances has a number of advantages: 1) radiation does not cause severe resistance; 2) there is a cross-fire effect and 3) smaller amounts of nuclides are required than other cytotoxic substances to cause the same damage. Such an approach is called radionuclide tumour therapy. Several factors are important for the success of radionuclide therapy, such as the pharmacokinetics of the radiolabelled substance and its radiocatabolites, as well as the physical and chemical properties of the radiolabel used.Nuclear properties of the label should be consistent with the problem to be solved: primary diagnostics; quantification of pharmacokinetics and dose planning; or therapy. From this point of view, radiohalogens are an attractive group of radiolabels. Halogens have nuclides with a variety of physical properties while the chemical and biological properties of halogens are very similar. The same labelling procedures can be used for all heavy halogens, i.e. bromine, iodine and astatine. It has been demonstrated that the biodistribution of proteins labelled with different heavy halogens is quite similar. The main goal of the study was to develop protein radiohalogenation methods that provide a stable halogen-protein bond, convenient labelling chemistry that preserves the binding properties of proteins, long intracellular retention of radioactivity in targeted cells and quick release of radiohalogenated catabolites from the blood circulation. Radiohalogenation of proteins using indirect methods was studied, including optimisation of labelling chemistry and biological characterisation of some labelled conjugates. Two groups for indirect radiohalogenation were used, representing two different labelling principles: activated ester of benzoic acid (1) and the derivative of closo-dodecaborate anion (2). The non-phenolic linker (1) as well as the borate-halogen moiety (2) probably prevent dehalogenation. The negative charge of the potential catabolic products of (2) might trap radiohalogens intracellularly.
  •  
2.
  • Wilbur, D Scott, et al. (author)
  • Trifunctional conjugation reagents. Reagents that contain a biotin and a radiometal chelation moiety for application to extracorporeal affinity adsorption of radiolabeled antibodies
  • 2002
  • In: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1520-4812 .- 1043-1802. ; 13:5, s. 1079-1092
  • Journal article (peer-reviewed)abstract
    • A method of removing radiolabeled monoclonal antibodies (mAbs) from blood using a device external to the body, termed extracorporeal affinity-adsorption (EAA), is being evaluated as a means of decreasing irradiation of noncancerous tissues in therapy protocols. The EAA device uses an avidin column to capture biotinylated-radiolabeled mAbs from circulated blood. In this investigation, three trifunctional reagents have been developed to minimize the potential deleterious effect on antigen binding brought about by the combination of radiolabeling and biotinylation of mAbs required in the EAA approach. The studies focused on radiolabeling with (111)In and (90)Y, so the chelates CHX-A' '-DTPA and DOTA, which form stable attachments to these radionuclides, were incorporated in the trifunctional reagents. The first trifunctional reagent prepared did not incorporate a group to block the biotin cleaving enzyme biotinidase, but the two subsequent reagents coupled aspartic acid to the biotin carboxylate for that purpose. All three reagents used 4,7,10-trioxa-1,13-tridecanediamine as water-soluble spacers between an aminoisophthalate core and the biotin or chelation group. The mAb conjugates were radioiodinated to evaluate cell binding as a function of substitution. Radioiodination was used so that a direct comparison with unmodified mAb could be made. Evaluation of the number of conjugates per antibody versus cell binding immunoreactivities indicated that minimizing the number of conjugates was best. Interestingly, a decrease of radioiodination yield as a function of the number of isothiocyanate containing conjugates per mAb was noted. The decreased yields were presumably due to the presence of thiourea functionality formed in the conjugation reaction. Radiolabeling with (111)In and (90)Y was facile at room temperature for conjugates containing the CHX-A' ', but elevated temperature (e.g., 45 degrees C) was required to obtain good yields with the DOTA chelate. Stability of (90)Y labeled mAb in serum, and when challenged with 10 mM EDTA, was high. However, challenging the (90)Y labeled mAb with 10 mM DTPA demonstrated high stability for the DOTA containing conjugate, but low stability for the CHX-A' ' containing conjugate. Thus, the choice between these two chelating moieties might be made on requirements for facile and gentle labeling versus very high in vivo stability. Application of the trifunctional biotinylation reagents to the blood clearance of labeled antibodies in EAA is under investigation. The new reagents may also be useful for other applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view