SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Windhorst Albert D) srt2:(2011-2014)"

Search: WFRF:(Windhorst Albert D) > (2011-2014)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Todde, Sergio, et al. (author)
  • EANM guideline for the preparation of an Investigational Medicinal Product Dossier (IMPD)
  • 2014
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Verlag (Germany). - 1619-7070 .- 1619-7089. ; 41:11, s. 2175-2185
  • Journal article (peer-reviewed)abstract
    • The preparation of an Investigational Medicinal Product Dossier (IMPD) for a radiopharmaceutical to be used in a clinical trial is a challenging proposition for radiopharmaceutical scientists working in small-scale radiopharmacies. In addition to the vast quantity of information to be assembled, the structure of a standard IMPD is not well suited to the special characteristics of radiopharmaceuticals. This guideline aims to take radiopharmaceutical scientists through the practicalities of preparing an IMPD, in particular giving advice where the standard format is not suitable. Examples of generic IMPDs for three classes of radiopharmaceuticals are given: a small molecule, a kit-based diagnostic test and a therapeutic radiopharmaceutical.
  •  
2.
  • van Assema, Danielle M. E., et al. (author)
  • No evidence for additional blood-brain barrier P-glycoprotein dysfunction in Alzheimer's disease patients with microbleeds
  • 2012
  • In: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 32:8, s. 1468-1471
  • Journal article (peer-reviewed)abstract
    • Decreased blood-brain barrier P-glycoprotein (Pgp) function has been shown in Alzheimer's disease (AD) patients using positron emission tomography (PET) with the radiotracer (R)-[C-11] verapamil. Decreased Pgp function has also been hypothesized to promote cerebral amyloid angiopathy (CAA) development. Here, we used PET and (R)-[C-11] verapamil to assess Pgp function in eighteen AD patients, of which six had microbleeds (MBs), presumably reflecting underlying CAA. No differences were found in binding potential and nonspecific volume of distribution of (R)-[C-11] verapamil between patient groups. These results provide no evidence for additional Pgp dysfunction in AD patients with MBs.
  •  
3.
  • Bahce, Idris, et al. (author)
  • Development of [11C]erlotinib Positron Emission Tomography for In Vivo Evaluation of EGF Receptor Mutational Status
  • 2013
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:1, s. 183-193
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To evaluate whether, in patients with non-small cell lung carcinoma (NSCLC), tumor uptake of [(11)C]erlotinib can be quantified and imaged using positron emission tomography and to assess whether the level of tracer uptake corresponds with the presence of activating tumor EGF receptor (EGFR) mutations.EXPERIMENTAL DESIGN: Ten patients with NSCLCs, five with an EGFR exon 19 deletion, and five without were scanned twice (test retest) on the same day with an interval of at least 4 hours. Each scanning procedure included a low-dose computed tomographic scan, a 10-minute dynamic [(15)O]H(2)O scan, and a 1-hour dynamic [(11)C]erlotinib scan. Data were analyzed using full tracer kinetic modeling. EGFR expression was evaluated using immunohistochemistry.RESULTS: The quantitative measure of [(11)C]erlotinib uptake, that is, volume of distribution (V(T)), was significantly higher in tumors with activating mutations, that is, all with exon 19 deletions (median V(T), 1.76; range, 1.25-2.93), than in those without activating mutations (median V(T), 1.06; range, 0.67-1.22) for both test and retest data (P = 0.014 and P = 0.009, respectively). Good reproducibility of [(11)C]erlotinib V(T) was seen (intraclass correlation coefficient = 0.88). Intergroup differences in [(11)C]erlotinib uptake were not correlated with EGFR expression levels, nor tumor blood flow.CONCLUSION: [(11)C]erlotinib V(T) was significantly higher in NSCLCs tumors with EGFR exon 19 deletions.
  •  
4.
  • Bogdanović, Renée Marie, et al. (author)
  • (R)-[(11)C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance : Evaluation in a rat epilepsy model
  • 2014
  • In: Neuropharmacology. - : Elsevier BV. - 0028-3908 .- 1873-7064. ; 85, s. 104-112
  • Journal article (peer-reviewed)abstract
    • Neuroinflammation has been suggested as a key determinant of the intrinsic severity of epilepsy. Glial cell activation and associated inflammatory signaling can influence seizure thresholds as well as the pharmacodynamics and pharmacokinetics of antiepileptic drugs. Based on these data, we hypothesized that molecular imaging of microglia activation might serve as a tool to predict drug refractoriness of epilepsy. Brain uptake of (R)-[(11)C]PK11195, a ligand of the translocator protein 18 kDa and molecular marker of microglia activation, was studied in a chronic model of temporal lobe epilepsy in rats with selection of phenobarbital responders and non-responders. In rats with drug-sensitive epilepsy, (R)-[(11)C]PK11195 brain uptake values were comparable to those in non-epileptic controls. Analysis in non-responders revealed enhanced brain uptake of up to 39% in different brain regions. The difference might be related to the fact that non-responders exhibited higher baseline seizure frequencies than responders indicating a more pronounced intrinsic disease severity. In hippocampal sections, ED1 immunostaining argued against a general difference in microglia activation between both groups. Our data suggest that TSPO PET imaging might serve as a biomarker for drug resistance in temporal lobe epilepsy. However, it needs to be considered that our findings indicate that the TSPO PET data might merely reflect seizure frequency. Future experimental and clinical studies should further evaluate the validity of TSPO PET data to predict the response to phenobarbital and other antiepileptic drugs in longitudinal studies with scanning before drug exposure and with a focus on the early phase following an epileptogenic brain insult.
  •  
5.
  • Eriksson, Jonas, et al. (author)
  • Transition metal mediated synthesis using [11C]CO at low pressure - a simplified method for 11C-carbonylation
  • 2012
  • In: Journal of labelled compounds & radiopharmaceuticals. - : Wiley. - 0362-4803 .- 1099-1344. ; 55, s. 223-228
  • Journal article (peer-reviewed)abstract
    • Transition metal mediated carbonylation with [11C]CO has proven a useful method to label a wide array of compounds in the carbonyl position. However, the general use in radiopharmaceutical synthesis has been hampered by the low solubility of carbon monoxide in most solvents and the resulting challenge to confine [11C]CO in low volume reaction vessels. This paper introduces a method that utilises xenon to transfer pre-concentrated [11C]CO to a sealed disposable glass vial containing carbonylation reagents. The high solubility of xenon in the organic solvent made it possible to confine the [11C]CO without utilising a pressure autoclave or chemical trapping additives. The utility of the method in 11C-carbonylation was investigated by conducting three model reactions, where [11C-carbonyl]N-benzylbenzamide, [11C-carbonyl]triclocarban and [11C-carbonyl]methyl nicotinate were afforded in decay corrected radiochemical yields of 71?+/-?6%, 42?+/-?15% and 29?+/-?10%, respectively. These promising results and the straight forward technical implementation suggest that 11C-cabonylation can become a viable mean to provide labelled carbonyl functionalities in routine radiopharmaceutical synthesis. Compounds labelled with short lived positron emitters are used in Positron Emission Tomography, a molecular imaging technology with applications in clinical diagnostics, clinical research and basic biomedical research.
  •  
6.
  • Harms, Hendrik J, et al. (author)
  • Quantification of [(11)C]-meta-hydroxyephedrine uptake in human myocardium
  • 2014
  • In: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 4
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The aims of this study were to determine the optimal tracer kinetic model for [(11)C]-meta-hydroxyephedrine ([(11)C]HED) and to evaluate the performance of several simplified methods.METHODS: Thirty patients underwent dynamic 60-min [(11)C]HED scans with online arterial blood sampling. Single-tissue and both reversible and irreversible two-tissue models were fitted to the data using the metabolite-corrected arterial input function. For each model, reliable fits were defined as those yielding outcome parameters with a coefficient of variation (CoV) <25%. The optimal model was determined using Akaike and Schwarz criteria and the F-test, together with the number of reliable fits. Simulations were performed to study accuracy and precision of each model. Finally, quantitative results obtained using a population-averaged metabolite correction were evaluated, and simplified retention index (RI) and standardized uptake value (SUV) results were compared with quantitative volume of distribution (V T) data.RESULTS: The reversible two-tissue model was preferred in 75.8% of all segments, based on the Akaike information criterion. However, V T derived using the single-tissue model correlated highly with that of the two-tissue model (r (2) = 0.94, intraclass correlation coefficient (ICC) = 0.96) and showed higher precision (CoV of 24.6% and 89.2% for single- and two-tissue models, respectively, at 20% noise). In addition, the single-tissue model yielded reliable fits in 94.6% of all segments as compared with 77.1% for the reversible two-tissue model. A population-averaged metabolite correction could not be used in approximately 20% of the patients because of large biases in V T. RI and SUV can provide misleading results because of non-linear relationships with V T.CONCLUSIONS: Although the reversible two-tissue model provided the best fits, the single-tissue model was more robust and results obtained were similar. Therefore, the single-tissue model was preferred. RI showed a non-linear correlation with V T, and therefore, care has to be taken when using RI as a quantitative measure.
  •  
7.
  • Poot, Alex J, et al. (author)
  • [(11)C]Sorafenib: Radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. :
  • 2013
  • In: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:4, s. 488-497
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Tyrosine kinase inhibitors (TKIs) like sorafenib are important anticancer therapeutics with thus far limited treatment response rates in cancer patients. Positron emission tomography (PET) could provide the means for selection of patients who might benefit from TKI treatment, if suitable PET tracers would be available. The aim of this study was to radiolabel sorafenib (1) with carbon-11 and to evaluate its potential as TKI-PET tracer in vivo. METHODS: Synthetic methods were developed in which sorafenib was labeled at two different positions, followed by a metabolite analysis in rats and a PET imaging study in tumor-bearing mice. RESULTS: [methyl-(11)C]-1 and [urea-(11)C]-1 were synthesized in yields of 59% and 53%, respectively, with a purity of >99%. The identity of the products was confirmed by coinjection on HPLC with reference sorafenib. In an in vivo metabolite analysis [(11)C]sorafenib proved to be stable. The percentage of intact product in blood-plasma after 45min was 90% for [methyl-(11)C]-1 and 96% for [urea-(11)C]-1, respectively. Due to the more reliable synthesis, further research regarding PET imaging was performed with [methyl-(11)C]-1 in nude mice bearing FaDu (head and neck cancer), MDA-MB-231 (breast cancer) or RXF393 (renal cancer) xenografts. Highest tracer accumulation at a level of 2.52±0.33%ID/g was observed in RXF393, a xenograft line extensively expressing the sorafenib target antigen Raf-1 as assessed by immunohistochemistry. CONCLUSION: In conclusion, we have synthesized [(11)C]sorafenib as PET tracer, which is stable in vivo and has the capability to be used as PET tracer for imaging in tumor-bearing mice.
  •  
8.
  • Postnov, Andrey, et al. (author)
  • Radiation Dose of the P-Glycoprotein Tracer 11C-Laniquidar.
  • 2013
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 54:12, s. 2101-2103
  • Journal article (peer-reviewed)abstract
    • Resistance to current drug therapy is an important issue in the treatment of epilepsy. Inadequate access of central nervous system drugs to their targets in the brain may be caused by overexpression or overactivity of multidrug transporters, such as P-glycoprotein (P-gp), at the blood-brain barrier. Laniquidar, an inhibitor of P-gp, has been labeled with (11)C for use in PET studies of P-gp expression in humans. Given potential interspecies differences in biodistribution, the purpose of this study was to ensure safe use of (11)C-laniquidar by determining the dosimetry of (11)C-laniquidar using whole-body PET studies.METHODS: Six healthy volunteers were subjected to a series of 10 whole-body PET scans within approximately 70 min. Five blood samples were taken during the series.RESULTS: High uptake of (11)C-laniquidar was seen in liver, spleen, kidneys, and lung, whereas brain uptake was low. The effective dose for (11)C-laniquidar was 4.76 ± 0.13 and 3.69 ± 0.01 μSv·MBq(-1) for women and men, respectively.CONCLUSION: Biodistribution and measured effective dose indicate that (11)C-laniquidar is a safe tracer for PET imaging, with a total dose of about 2 mSv for a brain PET/CT protocol.
  •  
9.
  • Syvänen, Stina, et al. (author)
  • Altered GABAA Receptor Density and Unaltered Blood-Brain Barrier Transport in a Kainate Model of Epilepsy : An In Vivo Study Using 11C-Flumazenil and PET.
  • 2012
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:12, s. 1974-1983
  • Journal article (peer-reviewed)abstract
    • The aim of the present study was to investigate if flumazenil blood-brain barrier transport and binding to the benzodiazepine site on the γ-aminobutyric acid A (GABA(A)) receptor complex is altered in an experimental model of epilepsy and subsequently to study if changes in P-glycoprotein (P-gp)-mediated efflux of flumazenil at the blood-brain barrier may confound interpretation of (11)C-flumazenil PET in epilepsy. METHODS: The transport of flumazenil across the blood-brain barrier and the binding to the benzodiazepine site on the GABA(A) receptors in 5 different brain regions was studied and compared between controls and kainate-treated rats, a model of temporal lobe epilepsy, with and without tariquidar pretreatment. In total, 29 rats underwent 2 consecutive (11)C-flumazenil PET scans, each one lasting 30 min. The tracer was mixed with different amounts of isotopically unmodified flumazenil (4, 20, 100, or 400 μg) to cover a wide range of receptor occupancies during the scan. Before the second scan, the rats were pretreated with a 3 or 15 mg/kg dose of the P-gp inhibitor tariquidar. The second scan was then obtained according to the same protocol as the first scan. RESULTS: GABA(A) receptor density, B(max), was estimated as 44 ± 2 ng⋅mL(-1) in the hippocampus and as 33 ± 2 ng⋅mL(-1) in the cerebellum, with intermediate values in the occipital cortex, parietal cortex, and caudate putamen. B(max) was decreased by 12% in kainate-treated rats, compared with controls. The radiotracer equilibrium dissociation constant, K(D), was similar in both rat groups and all brain regions and was estimated as 5.9 ± 0.9 ng⋅mL(-1). There was no difference in flumazenil transport across the blood-brain barrier between control and kainate-treated rats, and the effect of tariquidar treatment was similar in both rat groups. Tariquidar treatment also decreased flumazenil transport out of the brain by 73%, increased the volume of distribution in the brain by 24%, and did not influence B(max) or K(D), compared with baseline(.) CONCLUSION: B(max) was decreased in kainate-treated rats, compared with controls, but no alteration in the blood-brain barrier transport of flumazenil was observed. P-gp inhibition by tariquidar treatment increased brain concentrations of flumazenil in both groups, but B(max) estimates were not influenced, suggesting that (11)C-flumazenil scanning is not confounded by alterations in P-gp function.
  •  
10.
  • Syvänen, Stina, et al. (author)
  • [C-11]quinidine and [C-11]laniquidar PET imaging in a chronic rodent epilepsy model : Impact of epilepsy and drug-responsiveness
  • 2013
  • In: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:6, s. 764-775
  • Journal article (peer-reviewed)abstract
    • Introduction: To analyse the impact of both epilepsy and pharmacological modulation of P-glycoprotein on brain uptake and kinetics of positron emission tomography (PET) radiotracers [C-11]quinidine and [C-11]laniquidar.Methods: Metabolism and brain kinetics of both [C-11]quinidine and [C-11]laniquidar were assessed in naive rats, electrode-implanted control rats, and rats with spontaneous recurrent seizures. The latter group was further classified according to their response to the antiepileptic drug phenobarbital into "responders" and "non-responders". Additional experiments were performed following pre-treatment with the P-glycoprotein modulator tariquidar.Results: [C-11]quinidine was metabolized rapidly, whereas [C-11]laniquidar was more stable. Brain concentrations of both radiotracers remained at relatively low levels at baseline conditions. Tariquidar pre-treatment resulted in significant increases of [C-11]quinidine and [C-11]laniquidar brain concentrations. In the epileptic subgroup "non-responders", brain uptake of [C-11]quinidine in selected brain regions reached higher levels than in electrode-implanted control rats. However, the relative response to tariquidar did not differ between groups with full blockade of P-glycoprotein by 15 mg/kg of tariquidar. For [C-11]laniquidar differences between epileptic and control animals were only evident at baseline conditions but not after tariquidar pretreatment.Conclusions: We confirmed that both [C-11]quinidine and [C-11]laniquidar are P-glycoprotein substrates. At full P-gp blockade, tariquidar pre-treatment only demonstrated slight differences for [C-11]quinidine between drug-resistant and drug-sensitive animals.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view