SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wu Xiongyu 1972 ) srt2:(2018)"

Search: WFRF:(Wu Xiongyu 1972 ) > (2018)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhang, Jun, Dr. 1987-, et al. (author)
  • Intramolecular Proton and Charge Transfer of Pyrene-based trans-Stilbene Salicylic Acids Applied to Detection of Aggregated Proteins.
  • 2018
  • In: ChemPhysChem. - Weinheim, Germany : Wiley-VCH Verlag. - 1439-4235 .- 1439-7641. ; 19:22, s. 3001-3009
  • Journal article (peer-reviewed)abstract
    • Two analogues to the fluorescent amyloid probe 2,5-bis(4'-hydroxy-3'-carboxy-styryl)benzene (X-34) were synthesized based on the trans-stilbene pyrene scaffold (Py1SA and Py2SA). The compounds show strikingly different emission spectra when bound to preformed Aβ1-42 fibrils. This remarkable emission difference is retained when bound to amyloid fibrils of four distinct proteins, suggesting a common binding configuration for each molecule. Density functional theory calculations show that Py1SA is twisted, while Py2SA is more planar. Still, an analysis of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of the two compounds indicates that the degree of electronic coupling between the pyrene and salicylic acid (SA) moieties is larger in Py1SA than in Py2SA. Excited state intramolecular proton transfer (ESIPT) coupled-charge transfer (ICT) was observed for the anionic form in polar solvents. We conclude that ICT properties of trans-stilbene derivatives can be utilized for amyloid probe design with large changes in emission spectra and decay times from analogous chemical structures depending on the detailed physical nature of the binding site.less thanbr /greater than (© 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.)
  •  
2.
  • Zhang, Jun, Dr. 1987- (author)
  • Synthesis and characterization of fluorescent stilbene-based probes targeting amyloid fibrils
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Alzheimer’s disease (AD) is characterized by two main protein aggregate hallmarks in the brain: extracellular deposition of the amyloid-β (Aβ) in senile plaques and intracellular neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau protein. The past decade has seen great progress in the development of imaging probes for the non-invasive detection of Aβ and tau aggregates. Here positron emission tomography (PET), single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), are highly promising technologies for clinical diagnostics. However, as a research tool, optical imaging is superior because it is real-time, sensitive, inexpensive, not radioactive and that it in particular affords high-resolution studies both in vitro and in vivo. Fluorescent probes are especially useful for designing novel binding scaffolds for structure investigations of protein aggregates. This thesis describes design, synthesis and evaluation of a series of fluorescent probes for detection of amyloid fibrils, especially Aβ or tau aggregates in vitro.Firstly, trans-stilbenoid vinylbenzene-1,2-diol with benzene, naphthalene, anthracene, and pyrene are investigated with respect to their photophysical properties free in solution and when bound to amyloid fibrils, including time-resolved fluorescence measurements. It is noted that the extended conjugated systems retained the amyloid targeting properties of the probes and both the anthracene and pyrene moieties extensively enhanced the fluorescence intensity and prolonged lifetimes.Secondly, the synthesis of two molecules, Py1SA and Py2SA, based on pyrene linked to salicylic acid via a trans-stilbene C = C bond is presented. The compounds show strikingly different emission spectra when bound to preformed Aβ1-42 fibrils as well as to fibrils from four other distinct proteins. Additionally, excited state intramolecular proton transfer (ESIPT) coupled-charge transfer (ICT) is observed for the anionic form of the probes in polar solvents. This is likely the reason for the spectral differences of the probes when bound to amyloid fibrils.Moreover, the synthesis of a further development of the Congo red analogue X-34 [2,5-bis(4’-hydroxy-3’-carboxy-styryl) benzene] by rational design and synthesis is described. Full photophysical characterization was performed, including recording absorbance and fluorescence spectra, Stokes shift, quantum yield and fluorescence lifetimes. All ligands displayed high affinity towards recombinant amyloid fibrils of Aβ1-42 and tau as well as selectivity towards the corresponding disease-associated protein aggregates in human post mortem AD tissue.Lastly, the synthesis of a set of 2,1,3-benzothiadiazole (BTD)-based ligands with different conjugated spacers and variable patterns of OH substitutions of bis-styryl-BTD prototypes were developed. Aβ binding affinities (Aβ1-42 and Aβ1-40 fibrils) and the specificity towards Aβ plaques of all ligands were determined. These findings extend the structure to activity relationships of BTD-based ligands for Aβ fibril binding.Throughout the studies in this dissertation, new interesting properties of small molecule fluorescence probes have been discovered and analyzed. This knowledge should facilitate the development of noninvasive probes for early detection of Alzheimer's disease and to distinguish different Aβ fibril polymorphs.
  •  
3.
  • Silverå Ejneby, Malin, 1987-, et al. (author)
  • Atom-by-atom tuning of the electrostatic potassium-channel modulator dehydroabietic acid
  • 2018
  • In: The Journal of General Physiology. - New York, United States : Rockefeller Institute for Medical Research. - 0022-1295 .- 1540-7748. ; 150:5, s. 731-750
  • Journal article (peer-reviewed)abstract
    • Dehydroabietic acid (DHAA) is a naturally occurring component of pine resin that was recently shown to open voltage-gated potassium (KV) channels. The hydrophobic part of DHAA anchors the compound near the channel’s positively charged voltage sensor in a pocket between the channel and the lipid membrane. The negatively charged carboxyl group exerts an electrostatic effect on the channel’s voltage sensor, leading to the channel opening. In this study, we show that the channel-opening effect increases as the length of the carboxyl-group stalk is extended until a critical length of three atoms is reached. Longer stalks render the compounds noneffective. This critical distance is consistent with a simple electrostatic model in which the charge location depends on the stalk length. By combining an effective anchor with the optimal stalk length, we create a compound that opens the human KV7.2/7.3 (M type) potassium channel at a concentration of 1 µM. These results suggest that a stalk between the anchor and the effector group is a powerful way of increasing the potency of a channel-opening drug.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view