SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wyse Rosemary) srt2:(2018)"

Search: WFRF:(Wyse Rosemary) > (2018)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Buder, Sven, et al. (author)
  • The GALAH Survey : second data release
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 478:4, s. 4513-4552
  • Journal article (peer-reviewed)abstract
    • The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342 682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction, and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multistep approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (T-eff, log g, [Fe/H], [X/Fe], v(mic), vsin i, AKS) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
  •  
2.
  • Kos, Janez, et al. (author)
  • The GALAH survey : chemical tagging of star clusters and new members in the Pleiades
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 473:4, s. 4612-4633
  • Journal article (peer-reviewed)abstract
    • The technique of chemical tagging uses the elemental abundances of stellar atmospheres to 'reconstruct' chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey - which aims to observe one million stars using the Anglo-Australian Telescope - allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we explore t-distributed stochastic neighbour embedding (t-SNE) - which identifies an optimal mapping of a high-dimensional space into fewer dimensions - whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH survey. We recover seven of the nine observed clusters (six globular and three open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6 degrees-one tidal radius away from the cluster centre.
  •  
3.
  • McMillan, Paul J., et al. (author)
  • Improved distances and ages for stars common to TGAS and RAVE
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 477:4, s. 5279-5300
  • Journal article (peer-reviewed)abstract
    • We combine parallaxes from the first Gaia data release with the spectrophotometric distance estimation framework for stars in the fifth RAVE survey data release. The combined distance estimates aremore accurate than either determination in isolation - uncertainties are on average two times smaller than for RAVE-only distances (three times smaller for dwarfs), and 1.4 times smaller than TGAS parallax uncertainties (two times smaller for giants). We are also able to compare the estimates from spectrophotometry to those from Gaia, and use this to assess the reliability of both catalogues and improve our distance estimates. We find that the distances to the lowest log g stars are, on average, overestimated and caution that they may not be reliable. We also find that it is likely that the Gaia random uncertainties are smaller than the reported values. As a by-product we derive ages for the RAVE stars, many with relative uncertainties less than 20 per cent. These results for 219 566 RAVE sources have been made publicly available, and we encourage their use for studies that combine the radial velocities provided by RAVE with the proper motions provided by Gaia. A sample that we believe to be reliable can be found by taking only the stars with the flag notification 'flag_any=0'.
  •  
4.
  • Quillen, Alice C., et al. (author)
  • The GALAH survey : stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 478:1, s. 228-254
  • Journal article (peer-reviewed)abstract
    • Using GALAH (GALactic Archaeology with HERMES) survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d less than or similar to 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 16.40 km s(-1) kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos (High Precision Parallax COllecting Satellite) observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.
  •  
5.
  • Wojno, Jennifer, et al. (author)
  • Correlations between age, kinematics, and chemistry as seen by the RAVE survey
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:4, s. 5612-5624
  • Journal article (peer-reviewed)abstract
    • We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of 7.5 < R(kpc) < 9.0, using a sample of ~12 000 intermediate-mass (FGK) turn-offstars observed with the RAdial Velocity Experiment (RAVE) survey. The kinematics of this sample are determined using radial velocity measurements from RAVE, and parallax and proper motion measurements from the Tycho-Gaia Astrometric Solution (TGAS). In addition, ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young (0 < τ < 3 Gyr) and old (8 < τ < 13 Gyr) populations, and then consider different metallicity bins for each of these age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius (∂V R /∂R) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For ∂V Φ /∂R, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view