SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yancopoulou D) ;srt2:(2020-2022)"

Search: WFRF:(Yancopoulou D) > (2020-2022)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mannes, Marco, et al. (author)
  • Complement C3 activation in the ICU : Disease and therapy as Bonnie and Clyde
  • 2022
  • In: Seminars in Immunology. - : Elsevier. - 1044-5323 .- 1096-3618. ; 60
  • Research review (peer-reviewed)abstract
    • Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.
  •  
2.
  • Mastellos, Dimitrios C., et al. (author)
  • Complement C3 vs C5 inhibition in severe COVID-19 : Early clinical findings reveal differential biological efficacy
  • 2020
  • In: Clinical Immunology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1521-6616 .- 1521-7035. ; 220
  • Journal article (peer-reviewed)abstract
    • Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.
  •  
3.
  • Skendros, Panagiotis, et al. (author)
  • Complement C3 inhibition in severe COVID-19 using compstatin AMY-101
  • 2022
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:33
  • Journal article (peer-reviewed)abstract
    • Complement C3 activation contributes to COVID-19 pathology, and C3 targeting has emerged as a promising therapeutic strategy. We provide interim data from ITHACA, the first randomized trial evaluating a C3 inhibitor, AMY-101, in severe COVID-19 (PaO2/FiO2 <= 300 mmHg). Patients received AMY-101 (n = 16) or placebo (n = 15) in addition to standard of care. AMY-101 was safe and well tolerated. Compared to placebo (8 of 15, 53.3%), a higher, albeit nonsignificant, proportion of AMY-101-treated patients (13 of 16, 81.3%) were free of supplemental oxygen at day 14. Three nonresponders and two placebo-treated patients succumbed to disease-related complications. AMY-101 significantly reduced CRP and ferritin and restrained thrombin and NET generation. Complete and sustained C3 inhibition was observed in all responders. Residual C3 activity in the three nonresponders suggested the presence of a convertase-independent C3 activation pathway overriding the drug's inhibitory activity. These findings support the design of larger trials exploring the potential of C3-based inhibition in COVID-19 or other complement-mediated diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view