SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ylinen Tomi) srt2:(2009)"

Search: WFRF:(Ylinen Tomi) > (2009)

  • Result 1-10 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abdo, A. A., et al. (author)
  • A limit on the variation of the speed of light arising from quantum gravity effects
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 462:7271, s. 331-334
  • Journal article (peer-reviewed)abstract
    • A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
  •  
2.
  • Abdo, A. A., et al. (author)
  • Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Interstellar Matter and High-energy Cosmic Rays
  • 2009
  • In: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 703:2, s. 1249-1256
  • Journal article (peer-reviewed)abstract
    • Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse γ-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated γ-ray emissivity is (1.63 ± 0.05) × 10-26 photons s-1sr-1 H-atom-1 and (0.66 ± 0.02) × 10-26 photons s-1sr-1 H-atom-1 above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ~10%.
  •  
3.
  • Abdo, A. A., et al. (author)
  • Fermi/LAT observations of LS 5039
  • 2009
  • In: Astrophysical Journal Letters. - 0571-7248 .- 2041-8205. ; 706:1, s. L56-L61
  • Journal article (peer-reviewed)abstract
    • The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 ± 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 ± 0.5(stat) ± 1.8(syst) ×10–7 photon cm–2 s–1, with a cutoff at 2.1 ± 0.3(stat) ± 1.1(syst) GeV and photon index Γ = 1.9 ± 0.1(stat) ± 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.
  •  
4.
  • Abdo, A. A., et al. (author)
  • FERMI OBSERVATIONS OF GRB 090902B : A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 706:1, s. L138-L144
  • Journal article (peer-reviewed)abstract
    • We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below similar to 50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t(-1.5). The LAT detected a photon with the highest energy so far measured from a GRB, 33.4(-3.5)(+ 2.7) GeV. This event arrived 82 s after the GBM trigger and similar to 50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.
  •  
5.
  • Abdo, A. A., et al. (author)
  • The on-orbit calibration of the Fermi Large Area Telescope
  • 2009
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 32:3-4, s. 193-219
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.
  •  
6.
  • Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 326:5959, s. 1512-
  • Journal article (peer-reviewed)abstract
    • Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.
  •  
7.
  • Abdo, A. A., et al. (author)
  • FERMI DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 1275
  • 2009
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 699:1, s. 31-39
  • Journal article (peer-reviewed)abstract
    • We report the discovery of high-energy (E > 100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the gamma-ray source is only approximate to 3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of approximate to 5'. The spatial distribution of gamma-ay photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F-gamma = (2.10 +/- 0.23) x 10(-7) ph (>100 MeV) cm(-2) s(-1) and Gamma = 2.17 +/- 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F-gamma < 3.72 x 10(-8) ph (>100 MeV) cm(-2) s(-1) to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.
  •  
8.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+6114
  • 2009
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 706:2, s. 1331-1340
  • Journal article (peer-reviewed)abstract
    • We report the detection of gamma-ray pulsations (>= 0.1GeV) from PSR J2229+ 6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +/- 0.01 and 0.57 +/- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+ 6114 presents a very broad peak at phase 0.49 +/- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +/- 0.22 +/- 0.32) x 10(-7) cm(-2) s(-1) for PSR J1048-5832 and (3.77 +/- 0.22 +/- 0.44) x 10(-7) cm(-2) s(-1) for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources whichwere entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane.
  •  
9.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM A RELATIVISTIC JET IN THE NARROW-LINE QUASAR PMN J0948+0022
  • 2009
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 699:2, s. 976-984
  • Journal article (peer-reviewed)abstract
    • We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy. gamma-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow H beta (FWHM(H beta) similar to 1500 km s(-1)), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-ray and gamma-ray observations are presented. Both radio and gamma-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.
  •  
10.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM THE FLAT-SPECTRUM RADIO QUASAR PKS 1454-354
  • 2009
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 697:1, s. 934-941
  • Journal article (peer-reviewed)abstract
    • We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy gamma-ray (GeV) emission from the flat-spectrum radio quasar PKS 1454-354 (z = 1.424). On 2008 September 4, the source rose to a peak flux of (3.5 +/- 0.7) x 10(-6) ph cm(-2) s(-1) (E > 100 MeV) on a timescale of hours and then slowly dropped over the following 2 days. No significant spectral changes occurred during the flare. Fermi/LAT observations also showed that PKS 1454-354 is the most probable counterpart of the unidentified EGRET source 3EG J1500-3509. Multiwavelength measurements performed during the following days (7 September with Swift; 6-7 September with the ground-based optical telescope Automated Telescope for Optical Monitoring; 13 September with the Australia Telescope Compact Array) resulted in radio, optical, UV, and X-ray fluxes greater than archival data, confirming the activity of PKS 1454-354.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view