SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zeng Gang) srt2:(2015-2019)"

Search: WFRF:(Zeng Gang) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • 2019
  • Journal article (peer-reviewed)
  •  
3.
  • Haycock, Philip C., et al. (author)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • In: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
4.
  • Chen, Min, et al. (author)
  • Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation
  • 2019
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • There has been an urgent need to eliminate toxic lead from the prevailing halide perovskite solar cells (PSCs), but the current lead-free PSCs are still plagued with the critical issues of low efficiency and poor stability. This is primarily due to their inadequate photovoltaic properties and chemical stability. Herein we demonstrate the use of the lead-free, all-inorganic cesium tin-germanium triiodide (CsSn(0.5)Ge(0.5)l(3)) solid-solution perovskite as the light absorber in PSCs, delivering promising efficiency of up to 7.11%. More importantly, these PSCs show very high stability, with less than 10% decay in efficiency after 500 h of continuous operation in N-2 atmosphere under one-sun illumination. The key to this striking performance of these PSCs is the formation of a full-coverage, stable native-oxide layer, which fully encapsulates and passivates the perovskite surfaces. The native-oxide passivation approach reported here represents an alternate avenue for boosting the efficiency and stability of lead-free PSCs.
  •  
5.
  • Wang, Gang, et al. (author)
  • Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 114:47, s. E10066-E10073
  • Journal article (peer-reviewed)abstract
    • Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7x/3.9x, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R-2 (R-adj(2)) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (5)
Type of content
peer-reviewed (5)
Author/Editor
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Kelly, Daniel (1)
Vertessy, Beata G. (1)
Bengtsson-Palme, Joh ... (1)
show more...
Nilsson, Henrik (1)
Lund, Eiliv (1)
Overvad, Kim (1)
Trichopoulou, Antoni ... (1)
Tumino, Rosario (1)
Kelly, Ryan (1)
Li, Ying (1)
Fabiano, Simone (1)
Moore, Matthew D. (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Powell, John F. (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Liu, Fang (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Nàgy, Péter (1)
Kahan, Thomas (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Sörelius, Karl, 1981 ... (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
van Heel, David A (1)
Zheng, Jie (1)
Relton, Caroline L (1)
Eeles, Rosalind A (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Martin, Richard M (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Soranzo, Nicole (1)
Vellenga, Edo (1)
Backman, Lars (1)
show less...
University
Umeå University (2)
Stockholm University (2)
Linköping University (2)
Lund University (2)
Karolinska Institutet (2)
University of Gothenburg (1)
show more...
Uppsala University (1)
Halmstad University (1)
Chalmers University of Technology (1)
Karlstad University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (5)
Research subject (UKÄ/SCB)
Natural sciences (3)
Medical and Health Sciences (3)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view