SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhang Guowu) srt2:(2018)"

Search: WFRF:(Zhang Guowu) > (2018)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fei, Chao, et al. (author)
  • Demonstration of 15-M 7.33-Gb/s 450-nm Underwater Wireless Optical Discrete Multitone Transmission Using Post Nonlinear Equalization
  • 2018
  • In: Journal of Lightwave Technology. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0733-8724 .- 1558-2213. ; 36:3, s. 728-734
  • Journal article (peer-reviewed)abstract
    • In this paper, we experimentally demonstrate an underwater wireless optical communication (UWOC) system using a 450-nm gallium nitride (GaN) laser and adaptive bit-power loading discrete multitone (DMT). To enhance the system capacity, a post nonlinear equalizer based on the simplified Volterra series is employed at the receiver to mitigate the nonlinear impairments of the UWOC system. By combining the adaptive bit-power loading with nonlinear equalization, 7.33-Gb/s DMT-modulated UWOC under 15-m tap water is achieved at a bit error rate below the 7% hard-decision forward error correction (FEC) limit 3.8 x 10(-3). The electrical signal bandwidth is 1.25 GHz, which corresponds to an electrical spectrum efficiency of similar to 6 bit/s/Hz. The capacity-distance product reaches 109.95 Gb/s-m in a single channel UWOC system with tap water. Compared with the linear equalization case, the system capacity at the FEC limit for 15-m underwater transmission is improved by similar to 18% with the nonlinear equalization. Furthermore, the impact of turbidity on the performance of UWOC system is investigated by measuring the signal-to-noise ratio (SNR) under different suspension concentrations of Al(OH)(3) and Mg(OH)(2). The results show that significant SNR gains (>3 dB for transmission distance up to 11 m) can be obtained by the nonlinear equalization over a wide range of water turbidity levels representing "clear ocean," "coastal ocean," and "harbor water," which demonstrates the robustness of the proposed scheme in various ocean environments.
  •  
2.
  • Fei, Chao, et al. (author)
  • 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization
  • 2018
  • In: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 26:26, s. 34060-34069
  • Journal article (peer-reviewed)abstract
    • In this paper, we experimentally demonstrate a 450-nm laser underwater wireless optical transmission system by using adaptive bit-power loading discrete multi-tone (DMT) and Volterra series based post nonlinear equalization. Post nonlinear equalization mitigates the nonlinear impairment of the UWOC system. By incorporating post nonlinear equalization with a 3rd-order diagonal plane kernel, the received signal-to-noise ratio (SNR) can be improved by similar to 2 dB compared with a linear equalization method. The measured transmission capacity of the UWOC system is 16.6 Gbps over 5 m, 13.2 Gbps over 35 m, and 6.6 Gbps over 55 m tap water channel, with bit error rates (BERs) below the standard hard-decision forward error correction (HD-FEC) limit of 3.8 x 10(-3). The used electrical signal bandwidth is 2.75 GHz, corresponding to electrical spectrum efficiency of similar to 6 bit/s/Hz. The distance-datarate product reaches 462 Gbps*m at 35 m tap water transmission. To the best of our knowledge, both the data rate and distance-data rate product are the largest reported for single laser diode.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
He, Sailing (2)
Fei, Chao (2)
Zhang, Guowu (2)
Evans, Julian (1)
Gong, Yu (1)
Du, Ji (1)
show more...
Hong, Xiaojian (1)
Zhang, Junwei (1)
Wu, Yujian (1)
Hong, Xuezhi (1)
show less...
University
Royal Institute of Technology (2)
Language
English (2)
Research subject (UKÄ/SCB)
Natural sciences (1)
Engineering and Technology (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view