SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhao XiaoQing) srt2:(2016)"

Search: WFRF:(Zhao XiaoQing) > (2016)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Xiaojie, et al. (author)
  • Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys : effects of transmutation of W
  • 2016
  • In: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 0953-8984 .- 1361-648X. ; 28:29
  • Journal article (peer-reviewed)abstract
    • To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-yRexOsy (0 <= x, y <= 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C-11, the other elastic parameters including C-12, C-44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-yOsy than in W1-xRex. A strong correlation between C' and the fcc-bcc structural energy difference for W1-x-yRexOsy is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.
  •  
2.
  • Li, Xiaoqing, et al. (author)
  • Alloying effect on the ideal tensile strength of ferromagnetic and paramagnetic bcc iron
  • 2016
  • In: Journal of Alloys and Compounds. - : Elsevier. - 0925-8388 .- 1873-4669. ; 676, s. 565-574
  • Journal article (peer-reviewed)abstract
    • Using ab initio alloy theory formulated within the exact muffin-tin orbitals theory in combination with the coherent potential approximation, we investigate the ideal tensile strength (ITS) in the [001] direction of bcc ferro-/ferrimagnetic (FFM) and paramagnetic (PM) Fe1-xMx (M = Al, V, Cr, Mn, Co, or Ni) random alloys. The ITS of ferromagnetic (FM) Fe is calculated to be 12.6 GPa, in agreement with available data, while the PM phase turns out to posses a significantly lower value of 0.7 GPa. Alloyed to the FM matrix, we predict that V, Cr, and Co increase the ITS of Fe, while Al and Ni decrease it. Manganese yields a weak non-monotonic alloying behavior. In comparison to FM Fe, the alloying effect of Al and Co to PM Fe is reversed and the relative magnitude of the ITS can be altered more strongly for any of the solutes. All considered binaries are intrinsically brittle and fail by cleavage of the (001) planes under uniaxial tensile loading in both magnetic phases. We show that the previously established ITS model based on structural energy differences proves successful in the PM Fe-alloys but is of limited use in the case of the FFM Fe-based alloys. The different performance is attributed to the specific interplay between magnetism and volume change in response to uniaxial tension. We establish a strong correlation between the compositional effect on the ITS and the one on the shear elastic constant C' for the PM Fe-alloys and briefly discuss the relation between hardenability and the ITS.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view