SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhou Jing Ya) srt2:(2010-2014)"

Search: WFRF:(Zhou Jing Ya) > (2010-2014)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Richards, Stephen, et al. (author)
  • Genome Sequence of the Pea Aphid Acyrthosiphon pisum
  • 2010
  • In: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 8:2, s. e1000313-
  • Journal article (peer-reviewed)abstract
    • Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
  •  
3.
  • Zhou, Jing, et al. (author)
  • MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear
  • 2010
  • In: Nanomedicine. - : Future Medicine Ltd. - 1743-5889 .- 1748-6963. ; 5:5, s. 739-754
  • Journal article (peer-reviewed)abstract
    • Aim: Superparamagnetic iron oxide nanoparticles hierarchically coated with oleic acid and Pluronic F127 copolymers (POA@SPION) have shown exceptional 12 contrast enhancement. The aim of the present work was to investigate the MRI manifestation of POA@SPION in the inner ear. Materials & methods: A total of 26 male Wister rats were selected for testing POA@SPION administered through intracochlear, intratympanic and intravenous routes. MRI was performed with a 4.7 T MR scanner. Results & conclusion: POA@SPION can be introduced into the perilymph space, after which it becomes widely distributed and can demonstrate the integrity of the perilymph-endolymph barrier. Positive highlighting of the endolymph compartment against the darkened perilymph was visualized for the first time. POA@SPION passed through the middle-inner ear barriers in only small amounts, but stayed in the perilymph for 3 days. They did not traverse the blood-perilymph barrier or blood-endolymph barrier. The inner ear distribution of POA@SPION was confirmed by histology. POA@SPION is a promising T2 negative contrast agent.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view