SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhu Changlian 1964) srt2:(2015-2019)"

Search: WFRF:(Zhu Changlian 1964) > (2015-2019)

  • Result 1-10 of 41
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Xu, Jianhua, et al. (author)
  • A Variant of the Autophagy-Related 5 Gene is Associated with Child Cerebral Palsy
  • 2017
  • In: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 18
  • Journal article (peer-reviewed)abstract
    • Cerebral palsy (CP) is a major cause of childhood disability in developed and developing countries, but the pathogenic mechanisms of CP development remain largely unknown. Autophagy is a highly conserved cellular self-digestion of damaged organelles and dysfunctional macromolecules. Growing evidence suggests that autophagy-related gene 5 (ATG5)-dependent autophagy is involved in neural development, neuronal differentiation, and neurological degenerative diseases. The aim of this study was to analyze ATG5 protein expression and gene polymorphisms in Chinese patients with CP and to evaluate the importance of ATG5 in the development of CP. Five polymorphisms from different regions of the ATG5 gene (rs510432, rs3804338, rs573775, rs2299863, and rs6568431) were analyzed in 715 CP patients and 658 controls using MassARRAY. Of these, 58 patients and 56 controls were selected for measurement of plasma ATG5 level using ELISA. The relevance of disease-associated SNPs was evaluated using the SHEsis program. We identified a significant association between rs6568431 and CP (OR = 1.388, 95% CI = 1.173∼1.643, Pallele = 0.0005, Pgenotype = 0.0015). Subgroup analysis showed a highly significant association of rs6568431 with spastic CP (n = 468, OR = 1.511, 95% CI = 1.251∼1.824, Pallele = 8.50e−005, Pgenotype = 1.57e−004) and spastic quadriplegia (OR = 1.927, 95% CI = 1.533∼2.421, Pallele = 7.35e−008, Pgenotype = 3.24e−009). Furthermore, mean plasma ATG5 levels were lower in CP patients than in controls, and individuals carrying the AA genotype of rs6568431 that was positively associated with CP had lower plasma ATG5 levels (P < 0.05). This study demonstrated an association of an ATG5 gene variant and low level of ATG5 protein with CP, and stronger associations with severe clinical manifestations were identified. Our results provide novel evidence for a role of ATG5 in CP and shed light on the molecular mechanisms underlying this neurodevelopmental disorder.
  •  
2.
  • Sun, L. Y., et al. (author)
  • Variants of the OLIG2 Gene are Associated with Cerebral Palsy in Chinese Han Infants with Hypoxic-Ischemic Encephalopathy
  • 2019
  • In: Neuromolecular Medicine. - : Springer Science and Business Media LLC. - 1535-1084 .- 1559-1174. ; 21:1, s. 75-84
  • Journal article (peer-reviewed)abstract
    • Cerebral palsy (CP) is a leading cause of neurological disability among young children. Congenial and adverse perinatal clinical conditions, such as genetic factors, perinatal infection, and asphyxia, are risk factors for CP. Oligodendrocyte transcription factor (OLIG2) is a protein that is expressed in brain oligodendrocyte cells and is involved in neuron repair after brain injury. In this study, we employed a Chinese Han cohort of 763 CP infants and 738 healthy controls to study the association of OLIG2 gene polymorphisms with CP. We found marginal association of the SNP rs6517135 with CP (p=0.044) at the genotype level, and the association was greatly strengthened when we focused on the subgroup of CP infants who suffered from hypoxic-ischemic encephalopathy (HIE) after birth, with p=0.003 (OR=0.558) at the allele level and p=0.007 at the genotype level, indicating a risk-associated role of the T allele of the SNP rs6517135 under HIE conditions. The haplotype CTTG for rs6517135-rs1005573-rs6517137-rs9653711 in OLIG2 was also significantly associated with the occurrence of CP in infants with HIE (p=0.01, OR=0.521). Our results indicate that in the Han Chinese population, the polymorphisms of OLIG2 were associated with CP, especially in patients who had suffered HIE injury. This finding could be used to develop personalized care for infants with high susceptibility to CP.
  •  
3.
  • Xia, L., et al. (author)
  • Autophagy-Related Gene 7 Polymorphisms and Cerebral Palsy in Chinese Infants
  • 2019
  • In: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 13
  • Journal article (peer-reviewed)abstract
    • Cerebral palsy (CP) is a group of non-progressive motor impairment syndromes that are secondary to brain injury in the early stages of brain development. Numerous etiologies and risk factors of CP have been reported, and genetic contributions have recently been identified. Autophagy has an important role in brain development and pathological process, and autophagy-related gene 7 (ATG7) is essential for autophagosome biogenesis. The purpose of this study was to investigate the genetic association between ATG7 gene single nucleotide polymorphisms (SNPs) and CP in Han Chinese children. Six SNPs (rs346078, rs1470612, rs11706903, rs2606750, rs2594972, and rs4684787) were genotyped in 715 CP patients and 658 healthy controls using the MassArray platform. Plasma ATG7 protein was determined in 73 CP patients and 79 healthy controls. The differences in the allele and genotype frequencies of the rs1470612 and rs2594972 SNPs were determined between the CP patients and controls (p(allele) = 0.02 and 0.0004, p(genotype) = 0.044 and 0.0012, respectively). Subgroup analysis revealed a more significant association of rs1470612 (p(allele) = 0.004, p(genotype) = 0.0036) and rs2594972 (p(allele) = 0.0004, p(genotype) < 0.0001) with male CP, and more significant differences in allele and genotype frequencies were also noticed between CP patients with spastic diplegia and controls for rs1470612 (p(allele) = 0.0024, p(genotype) = 0.008) and rs2594972 (p(allele) < 0.0001, p(genotype) = 0.006). The plasma ATG7 level was higher in CP patients compared to the controls (10.58 +/- 0.85 vs. 8.18 +/- 0.64 pg/mL, p = 0.024). The luciferase reporter gene assay showed that the T allele of rs2594972 SNP could significantly increase transcriptional activity of the ATG7 promoter compared to the C allele (p = 0.009). These findings suggest that an association exists between genetic variants of ATG7 and susceptibility to CP, which provides novel evidence for the role of ATG7 in CP and contributes to our understanding of the molecular mechanisms of this neurodevelopmental disorder.
  •  
4.
  • Xia, L., et al. (author)
  • Combined analysis of interleukin-10 gene polymorphisms and protein expression in children with cerebral palsy
  • 2018
  • In: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 9:MAR
  • Journal article (peer-reviewed)abstract
    • Background: Interleukin-10 (IL-10) is an important anti-inflammatory and immunosuppressive cytokine, and it has indispensable functions in both the onset and development of inflammatory disorders. The association between persistent inflammation and the development of cerebral palsy (CP) has attracted much attention. Objective: The purpose of this study was to investigate whether IL-10 gene polymorphisms and plasma protein expression are associated with CP and to analyze the role of IL-10 in CP. Methods: A total of 282 CP patients and 197 healthy controls were genotyped for IL-10 polymorphisms (rs1554286, rs1518111, rs3024490, rs1800871, and rs1800896). Among them, 95 CP patients and 93 healthy controls were selected for plasma IL-10 measurement. Results: The differences in the rs3024490 (p = 0.033) and rs1800871 (p = 0.033) allele frequencies of IL-10 were determined between CP patients and controls. The frequencies of allele and genotype between CP patients with spastic tetraplegia and normal controls of IL-10 polymorphisms showed significant differences for rs1554286, rs151811, rs3024490, rs1800871, and rs1800896 (pallele = 0.015, 0.009, 0.006, 0.003, and 0.006, pgenotype = 0.039, 0.018, 0.027, 0.012, and 0.03, respectively). The plasma IL-10 protein level in CP patients was higher than normal controls (9.13 ± 0.77 vs. 6.73 ± 0.63 pg/ml, p = 0.017). IL-10 polymorphisms and protein association analysis showed that the TT genotype had higher plasma IL-10 protein levels compared to the GG + GT genotype at rs3024490 (11.14 ± 7.27 vs. 7.44 ± 6.95 pg/ml, p = 0.045, respectively) in CP cases. Conclusion: These findings provide an important contribution toward explaining the pleiotropic role of IL-10 in the complex etiology of CP. © 2018 Xia, Chen, Bi, Song, Zhang, Wang, Zhu, Shang, Xu, Wang, Xing and Zhu.
  •  
5.
  • Xu, Yiran, 1988, et al. (author)
  • Cranial Irradiation Induces Hypothalamic Injury and Late-Onset Metabolic Disturbances in Juvenile Female Rats.
  • 2018
  • In: Developmental Neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 40:2, s. 120-33
  • Journal article (peer-reviewed)abstract
    • Cranial radiotherapy is one of the most effective tools for treating children with brain tumors. However, radiotherapy-induced late-onset side effects have a significant impact on patients' quality of life. The purpose of this study was to investigate the effects of irradiation on metabolism and the possible molecular and cellular mechanisms behind such effects. Female Wistar rats were subjected to a single dose of 6-Gy whole-brain irradiation on postnatal day 11. The animals were sacrificed 6 h or 20 weeks after irradiation. Cell death and proliferation, microglial activation, and inflammation were analyzed and RNA sequencing was performed. We found that irradiation led to a significantly increased body weight from 15 weeks (p < 0.05) along with white adipose tissue accumulation and adipocyte hypertrophy at 20 weeks, and these changes were accompanied by glucose and lipid metabolic disturbances as indicated by reduced glucose tolerance, increased insulin resistance, increased serum triglycerides, and an increased leptin/adiponectin ratio. Furthermore, irradiation induced cell death, microglial activation, inflammation, and persistent astrocyte reactivity in the hypothalamus. Hypothalamic transcriptome analysis showed that 865 genes were downregulated and 290 genes were upregulated in the irradiated group 20 weeks after irradiation, and further pathway analysis showed that the insulin resistance-related PI3K-Akt signaling pathway and the energy expenditure-related adipocytokine signaling pathway were downregulated. Gene Ontology enrichment analysis showed that the expression of fatty acid metabolism-related proteins and effector proteins was significantly different in the irradiation group. This study demonstrates that ionizing radiation to the juvenile female brain induces hypothalamic damage that is likely to be associated with delayed metabolic abnormalities, and this critical vulnerability of the hypothalamus to irradiation should be taken into consideration in the development of future protective strategies for radiotherapy.
  •  
6.
  • Yu, T., et al. (author)
  • Association of NOS1 gene polymorphisms with cerebral palsy in a Han Chinese population: a case-control study
  • 2018
  • In: Bmc Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Background: Cerebral palsy (CP) is the leading cause of motor disability in children; however, its pathogenesis is unknown in most cases. Growing evidence suggests that Nitric oxide synthase 1 (NOS1) is involved in neural development and neurologic diseases. The purpose of this study was to determine whether genetic variants of NOS1 contribute to CP susceptibility in a Han Chinese population. Methods: A case-control study involving 652 CP patients and 636 healthy controls was conducted. Six SNPs in the NOS1 gene (rs3782219, rs6490121, rs2293054, rs10774909, rs3741475, and rs2682826) were selected, and the MassARRAY typing technique was applied for genotyping. Data analysis was conducted using SHEsis online software, and multiple test corrections were performed using SNPSpD online software. Results: There were no significant differences in genotype and allele frequencies between patients and controls for the SNPs except rs6490121, which deviated from Hardy-Weinberg equilibrium and was excluded from further analyses. Subgroup analysis revealed differences in genotype frequencies between the CP with neonatal encephalopathy group (CP + NE) and control group for rs10774909, rs3741475, and rs2682826 (after SNPSpD correction, p = 0.004, 0.012, and 0. 002, respectively). The T allele of NOS1 SNP rs3782219 was negatively associated with spastic quadriplegia (OR = 0.742, 95% CI = 0.600-0.918, after SNPSpD correction, p = 0.023). There were no differences in allele or genotype frequencies between CP subgroups and controls for the other genetic polymorphisms. Conclusions: NOS1 is associated with CP + NE and spastic quadriplegia, suggesting that NOS1 is likely involved in the pathogenesis of CP and that it is a potential therapeutic target for treatment of cerebral injury.
  •  
7.
  • Yuan, J., et al. (author)
  • Lithium treatment is safe in children with intellectual disability
  • 2018
  • In: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 11
  • Journal article (peer-reviewed)abstract
    • Lithium is a widely used and effective treatment for individuals with psycho-neurological disorders, and it exhibits protective and regenerative properties in multiple brain injury animal models, but the clinical experience in young children is limited due to potential toxicity. As an interim analysis, this paper reports the safety/tolerability profiles of low-dose lithium treatment in children with intellectual disability (ID) and its possible beneficial effects. In a randomized, single-center clinical trial, 124 children with ID were given either oral lithium carbonate 6 mg/kg twice per day or the same dose of calcium carbonate as a placebo (n = 62/group) for 3 months. The safety of low-dose lithium treatment in children, and all the adverse events were monitored. The effects of low-dose lithium on cognition was evaluated by intelligence quotient (IQ), adaptive capacity was assessed by the Infant-Junior Middle School Students Social-Life Abilities Scale (IJMSSSLAS), and overall performance was evaluated according to the Clinical Global Impression-Improvement (CGI-I) scale. After 3 months of lithium treatment, 13/61 children (21.3%) presented with mild side effects, including 4 (6.6%) with gastrointestinal symptoms, 4 (6.6%) with neurological symptoms, 2 (3.3%) with polyuria, and 3 (4.9%) with other symptoms—one with hyperhidrosis, one with alopecia, and one with drooling. Four children in the lithium group had elevated blood thyroid stimulating hormone, which normalized spontaneously after lithium discontinuation. Both IQ and IJMSSSAS scores increased following 3 months of lithium treatment (F = 11.03, p = 0.002 and F = 7.80, p = 0.007, respectively), but such increases were not seen in the placebo group. CGI-I scores in the lithium group were 1.25 points lower (better) than in the placebo group (F = 82.66, p < 0.001) after 3 months of treatment. In summary, lithium treatment for 3 months had only mild and reversible side effects and had positive effects on cognition and overall performance in children with ID. © 2018 Yuan, Song, Zhu, Sun, Xia, Zhang, Gao, Agam, Wang, Blomgren and Zhu.
  •  
8.
  • Albertsson, Anna-Maj, et al. (author)
  • γδ T cells contribute to injury in the developing brain.
  • 2018
  • In: The American journal of pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 188:3, s. 757-767
  • Journal article (peer-reviewed)abstract
    • Brain injury in premature infants, especially periventricular leukomalacia, is an important cause of neurological disabilities. Inflammation contributes to the development of perinatal brain injury, but the essential mediators leading to brain injury in early life remain largely unknown. Neonates have reduced capacity for mounting conventional αβT-cell responses. However γδT-cells are already functionally competent during early development and are important in early life immunity. We investigated the potential contribution of γδT-cells to preterm brain injury by using postmortem brains from human preterm infants with periventricular leukomalacia and two animal models of preterm brain injury-the hypoxic-ischemic mouse model and a fetal sheep asphyxia model. Large numbers of γδT-cells were observed in the brains of mice, sheep, and postmortem preterm infants after injury, and depletion of γδT-cells provided protection in the mouse model. The common γδT-cell associated cytokines interferon-γ and interleukin (IL)-17A were not detectable in the brain. Although there were increased mRNA levels of Il17f and Il22 in the mouse brains after injury, neither IL-17F nor IL-22 cytokines contributed to preterm brain injury. These findings highlight unique features of injury in the developing brain where, unlike injury in the mature brain, γδT-cells function as important initiators of injury independently of common γδT-cell associated cytokines. This new finding will help to identify therapeutic targets for preventing or treating preterm infants with brain injury.
  •  
9.
  • Bi, D., et al. (author)
  • Association of COL4A1 gene polymorphisms with cerebral palsy in a Chinese Han population
  • 2016
  • In: Clinical Genetics. - : Wiley. - 0009-9163. ; 90:2, s. 149-155
  • Journal article (peer-reviewed)abstract
    • The basement membrane (BM) is an extracellular matrix associated with overlying cells and is important for proper tissue development, stability, and physiology. COL4A1 is the most abundant component of type IV collagen in the BM, and COL4A1 variants can present with variable phenotypes that might be related to cerebral palsy (CP). We postulated, therefore, that variations in the COL4A1 gene might play an important role in the etiology of CP. In this study, six single nucleotide polymorphisms (SNPs) in the COL4A1 gene were genotyped among 351 CP patients and 220 healthy controls from the Chinese Han population. Significant association was found for an association between CP and rs1961495 (allele: p = 0.008, odds ratio (OR) = 1.387, 95% confidence interval (CI) = 1.088–1.767) and rs1411040 (allele: p = 0.009, OR = 1.746, 95% CI = 1.148–2.656) SNPs of the COL4A1 gene. Multifactor dimensionality reduction analysis suggested that these SNPs had interactive effects on the risk of CP. This study is the first attempt to investigate the contribution of polymorphisms in the COL4A1 gene to the susceptibility of CP in a Chinese Han population. This study shows an association of the COL4A1 gene with CP and suggests a potential role of COL4A1 in the pathogenesis of CP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
  •  
10.
  • D'angelo, Barbara, et al. (author)
  • GSK3β inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling
  • 2016
  • In: Neuropharmacology. - : Elsevier BV. - 0028-3908. ; 101, s. 13-23
  • Journal article (peer-reviewed)abstract
    • Hypoxic-ischaemic (HI) injury is an important cause of neurological morbidity in neonates. HI leads to pathophysiological responses, including inflammation and oxidative stress that culminate in cell death. Activation of glycogen synthase kinase 3β (GSK3β) and the signal transducer and activator of transcription (STAT3) promotes brain inflammation. The purpose of this study was to test whether inhibition of GSK3β signalling protects against neonatal HI brain injury. Mice were subjected to HI at postnatal day (PND) 9 and treated with a selective GSK3β inhibitor, SB216763. Brain injury and caspase-3 activation, anti-oxidant and inflammatory mRNA responses and activation of STAT3 were analysed. Our results show that HI reduced phosphorylation of GSK3β, thus promoting its kinase activity. The GSK3β inhibitor reduced caspase-3 activation and neuronal cell death elicited by HI and reverted the effects of HI on gene expression of the anti-oxidant enzyme sod2 and mitochondrial factor pgc1α. The HI insult activated STAT3 in glial cells and GSK3β inhibition attenuated STAT3 phosphorylation and its nuclear translocation following HI. Further, GSK3β inhibition reduced HI-induced gene expression of pro-inflammatory cytokines tnfα and Il-6, while promoted the anti-inflammatory factor Il-10. In summary, data show that GSK3β inhibition is neuroprotective in neonatal HI brain injury likely via reduced pro-inflammatory responses by blocking STAT3 signalling. Our study suggests that pharmacological interventions built upon GSK3β silencing strategies could represent a novel therapy in neonatal brain injury. © 2015 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view