SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zou Ying) srt2:(2020-2021)"

Search: WFRF:(Zou Ying) > (2020-2021)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Chen, Yuxi, et al. (author)
  • Magnetohydrodynamic With Embedded Particle-In-Cell Simulation of the Geospace Environment Modeling Dayside Kinetic Processes Challenge Event
  • 2020
  • In: Earth and Space Science. - : American Geophysical Union (AGU). - 2333-5084. ; 7:11
  • Journal article (peer-reviewed)abstract
    • We use the magnetohydrodynamic (MHD) with embedded particle-in-cell model (MHD-EPIC) to study the Geospace Environment Modeling (GEM) dayside kinetic processes challenge event at 01:50-03:00 UT on 18 November 2015, when the magnetosphere was driven by a steady southward interplanetary magnetic field (IMF). In the MHD-EPIC simulation, the dayside magnetopause is covered by a PIC code so that the dayside reconnection is properly handled. We compare the magnetic fields and the plasma profiles of the magnetopause crossing with the MMS3 spacecraft observations. Most variables match the observations well in the magnetosphere, in the magnetosheath, and also during the current sheet crossing. The MHD-EPIC simulation produces flux ropes, and we demonstrate that some magnetic field and plasma features observed by the MMS3 spacecraft can be reproduced by a flux rope crossing event. We use an algorithm to automatically identify the reconnection sites from the simulation results. It turns out that there are usually multiple X-lines at the magnetopause. By tracing the locations of the X-lines, we find that the typical moving speed of the X-line endpoints is about 70 km/s, which is higher than but still comparable with the ground-based observations.
  •  
3.
  • Hosokawa, Keisuke, et al. (author)
  • Aurora in the Polar Cap : A Review
  • 2020
  • In: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 216:1
  • Research review (peer-reviewed)abstract
    • This paper reviews our current understanding of auroral features that appear poleward of the main auroral oval within the polar cap, especially those that are known as Sun-aligned arcs, transpolar arcs, or theta auroras. They tend to appear predominantly during periods of quiet geomagnetic activity or northwards directed interplanetary magnetic field (IMF). We also introduce polar rain aurora which has been considered as a phenomenon on open field lines. We describe the morphology of such auroras, their development and dynamics in response to solar wind-magnetosphere coupling processes, and the models that have been developed to explain them.
  •  
4.
  • Huang, C. Y., et al. (author)
  • The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance
  • 2021
  • In: Cell Discovery. - : Springer Science and Business Media LLC. - 2056-5968. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Cardamine enshiensis is a well-known selenium (Se)-hyperaccumulating plant. Se is an essential trace element associated with many health benefits. Despite its critical importance, genomic information of this species is limited. Here, we report a chromosome-level genome assembly of C. enshiensis, which consists of 443.4 Mb in 16 chromosomes with a scaffold N50 of 24 Mb. To elucidate the mechanism of Se tolerance and hyperaccumulation in C. enshiensis, we generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes. The results reveal that flavonoid, glutathione, and lignin biosynthetic pathways may play important roles in protecting C. enshiensis from stress induced by Se. Hi-C analysis of chromatin interaction patterns showed that the chromatin of C. enshiensis is partitioned into A and B compartments, and strong interactions between the two telomeres of each chromosome were correlated with histone modifications, epigenetic markers, DNA methylation, and RNA abundance. Se supplementation could affect the 3D chromatin architecture of C. enshiensis at the compartment level. Genes with compartment changes after Se treatment were involved in selenocompound metabolism, and genes in regions with topologically associated domain insulation participated in cellular responses to Se, Se binding, and flavonoid biosynthesis. This multiomics research provides molecular insight into the mechanism underlying Se tolerance and hyperaccumulation in C. enshiensis.
  •  
5.
  • Liu, Ximeng, et al. (author)
  • Privacy and Security Issues in Deep Learning: A Survey
  • 2021
  • In: IEEE Access. - : IEEE. - 2169-3536. ; 9, s. 4566-4593
  • Journal article (peer-reviewed)abstract
    • Deep Learning (DL) algorithms based on artificial neural networks have achieved remarkable success and are being extensively applied in a variety of application domains, ranging from image classification, automatic driving, natural language processing to medical diagnosis, credit risk assessment, intrusion detection. However, the privacy and security issues of DL have been revealed that the DL model can be stolen or reverse engineered, sensitive training data can be inferred, even a recognizable face image of the victim can be recovered. Besides, the recent works have found that the DL model is vulnerable to adversarial examples perturbed by imperceptible noised, which can lead the DL model to predict wrongly with high confidence. In this paper, we first briefly introduces the four types of attacks and privacy-preserving techniques in DL. We then review and summarize the attack and defense methods associated with DL privacy and security in recent years. To demonstrate that security threats really exist in the real world, we also reviewed the adversarial attacks under the physical condition. Finally, we discuss current challenges and open problems regarding privacy and security issues in DL.
  •  
6.
  • Lu, Qianqian, et al. (author)
  • Ebselen, a multi-target compound : its effects on biological processes and diseases
  • 2021
  • In: Expert Reviews in Molecular Medicine. - : Cambridge University Press. - 1462-3994. ; 23
  • Research review (peer-reviewed)abstract
    • Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
  •  
7.
  • Luo, Yang, et al. (author)
  • Three-dimensional and temperature-dependent electronic structure of the heavy-fermion compound CePt2In7 studied by angle-resolved photoemission spectroscopy
  • 2020
  • In: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 101:11
  • Journal article (peer-reviewed)abstract
    • The three-dimensional and temperature-dependent electronic structures of the heavy-fermion superconductor CePt2In7 are investigated. Angle-resolved photoemission spectroscopy using variable photon energy establishes the existence of quasi-two- and three-dimensional Fermi surface topologies. Temperature-dependent 4d-4f on-resonance photoemission spectroscopies data reveal that heavy quasiparticle bands begin to form at a temperature well above the characteristic (coherence) temperature T+. The emergence of low-lying crystal electric field excitation may be responsible for the "relocalization" or the precursor to the establishment of heavy electrons coherence in heavy-fermion compounds. These findings provide critical insight into understanding the hybridization in heavy-fermion systems.
  •  
8.
  • Qiao, Mengfei, et al. (author)
  • Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery
  • 2020
  • In: Journal of Energy Challenges and Mechanics. - : Elsevier. - 2056-9386. ; 47, s. 146-154
  • Journal article (peer-reviewed)abstract
    • The development of bifunctional oxygen electrocatalysts with high efficiency, high stability, and low cost is of great significance to the industrialization of rechargeable Zn–air batteries. A widely accepted view is that the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) follow different catalytic mechanisms, and accordingly they need different active sites for catalysis. Transition metal elements have admirable electronic acceptance ability for coordinating with reactants, and this can weaken the bond energy between reactants, thus promoting the ORR or OER reactions. Herein, the ORR and OER activities of different transition metal supported nitrogen-doped carbon nanotubes were systematically studied and compared. The optimal catalyst for synchronous ORR and OER was obtained by pyrolyzing melamine, cobalt nitrate, and nickel nitrate on carbon nanotubes, called cobalt–nickel supported nitrogen-mixed carbon nanotubes (CoNi–NCNT), which were equipped with two types of high-performance active sites—the Co/Ni–N–C structure for the ORR and CoNi alloy particles for the OER—simultaneously. Remarkably, the optimized CoNi–NCNT exhibited a satisfactory bifunctional catalytic activity for both the ORR and OER. The value of the oxygen electrode activity parameter, ΔE, of CoNi–NCNT was 0.81 V, which surpasses that of catalysts Pt/C and Ir/C, and most of the non-precious metal-based bifunctional electrocatalysts reported in previous literatures. Furthermore, a specially assembled rechargeable Zn–air cell with CoNi–NCNT loaded carbon paper as an air cathode was used to evaluate the practicability. As a result, a superior specific capacity of 744.3 mAh/gZn, a peak power density of 88 mW/cm2, and an excellent rechargeable cycling stability were observed, and these endow the CoNi–NCNT with promising prospects for practical application.
  •  
9.
  • Song, Jiao-Jiao, et al. (author)
  • The 4f-Hybridization Strength in CemMnIn3m+2n Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy
  • 2021
  • In: Chinese Physics Letters. - : IOP Publishing. - 0256-307X .- 1741-3540. ; 38:10
  • Journal article (peer-reviewed)abstract
    • We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CemMnIn3m+2n (with M = Co, Rh, Jr, and Pt, m = 1, 2, n = 0-2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands f(0), f(7/2)(1) and f(5/2)(1), are observed in all compounds, whereas their intensities and energy locations vary greatly with materials. The strong f(0) states imply that the localized electron behavior dominates the Ce 4f states. The Ce 4f electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerancy. Our quantitative comparison reveals that the f(5/2)(1)-f (0) intensity ratio is more suitable to reflect the 4f-state hybridization strength.
  •  
10.
  • Teng, Pengpeng, et al. (author)
  • Degradation and self-repairing in perovskite light-emitting diodes
  • 2021
  • In: Matter. - : Elsevier. - 2590-2393 .- 2590-2385. ; 4:11, s. 3710-3724
  • Journal article (peer-reviewed)abstract
    • One of the most critical challenges in perovskite light-emitting diodes (PeLEDs) lies in poor operational stability. Although field dependent ion migration is believed to play an important role in the operation of perovskite optoelectronic devices, a complete understanding of how it affects the stability of PeLEDs is still missing. Here, we report a unique self-repairing behavior that the electroluminescence of moderately degraded PeLEDs can almost completely restore to their initial performance after resting. We find that the accumulated halides within the hole transport layer undergo back diffusion toward the surface of the perovskite layer during resting, repairing the vacancies and thus resulting in electroluminescence recovery. These findings indicate that one of the dominant degradation pathways in PeLEDs is the generation of halide vacancies at perovskite/hole transport layer interface during operation. We thus further passivate this key interface, which results in a high external quantum efficiency of 22.8% and obviously improved operational stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view