SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Zijl Peter C. M.) srt2:(2020)"

Search: WFRF:(van Zijl Peter C. M.) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Huang, Jianpan, et al. (author)
  • Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI
  • 2020
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:20
  • Journal article (peer-reviewed)abstract
    • Altered cerebral glucose uptake is one of the hallmarks of Alzheimer's disease (AD). A dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) approach was developed to simultaneously monitor d-glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF). We observed substantially higher uptake in parenchyma of young (6 months) transgenic AD mice compared to age-matched wild-type (WT) mice. Notably lower uptakes were observed in parenchyma and CSF of old (16 months) AD mice. Both young and old AD mice had an obviously slower CSF clearance than age-matched WT mice. This resembles recent reports of the hampered CSF clearance that leads to protein accumulation in the brain. These findings suggest that DGE MRI can identify altered glucose uptake and clearance in young AD mice upon the emergence of amyloid plaques. DGE MRI of brain parenchyma and CSF has potential for early AD stratification, especially at 3T clinical field strength MRI.
  •  
2.
  • Xu, Xiang, et al. (author)
  • d-glucose weighted chemical exchange saturation transfer (glucoCEST)-based dynamic glucose enhanced (DGE) MRI at 3T : early experience in healthy volunteers and brain tumor patients
  • 2020
  • In: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 84:1, s. 247-262
  • Journal article (peer-reviewed)abstract
    • PURPOSE: Dynamic glucose enhanced (DGE) MRI has shown potential for imaging glucose delivery and blood-brain barrier permeability at fields of 7T and higher. Here, we evaluated issues involved with translating d-glucose weighted chemical exchange saturation transfer (glucoCEST) experiments to the clinical field strength of 3T.METHODS: Exchange rates of the different hydroxyl proton pools and the field-dependent T2 relaxivity of water in d-glucose solution were used to simulate the water saturation spectra (Z-spectra) and DGE signal differences as a function of static field strength B0 , radiofrequency field strength B1 , and saturation time tsat . Multislice DGE experiments were performed at 3T on 5 healthy volunteers and 3 glioma patients.RESULTS: Simulations showed that DGE signal decreases with B0 , because of decreased contributions of glucoCEST and transverse relaxivity, as well as coalescence of the hydroxyl and water proton signals in the Z-spectrum. At 3T, because of this coalescence and increased interference of direct water saturation and magnetization transfer contrast, the DGE effect can be assessed over a broad range of saturation frequencies. Multislice DGE experiments were performed in vivo using a B1 of 1.6 µT and a tsat of 1 second, leading to a small glucoCEST DGE effect at an offset frequency of 2 ppm from the water resonance. Motion correction was essential to detect DGE effects reliably.CONCLUSION: Multislice glucoCEST-based DGE experiments can be performed at 3T with sufficient temporal resolution. However, the effects are small and prone to motion influence. Therefore, motion correction should be used when performing DGE experiments at clinical field strengths.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view