SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lind B.) srt2:(2020-2024)"

Search: WFRF:(Lind B.) > (2020-2024)

  • Result 21-30 of 157
Sort/group result
   
EnumerationReferenceCoverFind
21.
  • Ntalla, Ioanna, et al. (author)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
22.
  • Wang, Z., et al. (author)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Journal article (peer-reviewed)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
23.
  • Klonoff, D. C., et al. (author)
  • A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings
  • 2022
  • In: Journal of Diabetes Science and Technology. - : SAGE Publications. - 1932-2968.
  • Journal article (peer-reviewed)abstract
    • Background: A composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data. Methods: We assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low–glucose and low-glucose hypoglycemia; very high–glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation. Results: The analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals. Conclusion: The GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments.
  •  
24.
  • Shah, S, et al. (author)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Journal article (peer-reviewed)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
25.
  •  
26.
  •  
27.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
28.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
29.
  • Shrine, N, et al. (author)
  • Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
  • 2023
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 55:3, s. 410-
  • Journal article (peer-reviewed)abstract
    • Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
  •  
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 21-30 of 157
Type of publication
journal article (143)
conference paper (7)
other publication (2)
book chapter (2)
research review (1)
Type of content
peer-reviewed (140)
other academic/artistic (14)
pop. science, debate, etc. (1)
Author/Editor
Lind, Lars (45)
Lind, Karin (28)
Lind, L (25)
Bland-Hawthorn, Joss (20)
Sharma, Sanjib (20)
Buder, Sven (20)
show more...
Zucker, Daniel B. (20)
Zwitter, Tomaz (20)
Peters, A (19)
Kos, Janez (19)
Lewis, Geraint F. (19)
Hayward, C. (18)
De Silva, Gayandhi M ... (18)
Martell, Sarah L. (18)
Simpson, Jeffrey D. (18)
Gieger, C (17)
Stello, Dennis (16)
Lehtimaki, T. (16)
Metspalu, A (16)
Salomaa, V (16)
D'Orazi, Valentina (16)
Asplund, Martin (16)
Freeman, Ken C. (16)
Nordlander, Thomas (16)
Mahajan, A. (15)
Teumer, A (15)
Gudnason, V (15)
Lind, Marcus, 1976 (15)
Stefansson, K (15)
Casey, Andrew R. (14)
Esko, T (14)
Morris, Andrew P. (14)
Hayden, Michael R (14)
Lin, Jane (14)
Langenberg, C. (13)
Sundström, Johan, Pr ... (13)
Snieder, H. (13)
Jarvelin, MR (13)
Polašek, O. (13)
Cotar, Klemen (13)
Nauck, M (12)
Ikram, MA (12)
Campbell, A (12)
Wilson, JF (12)
Kavousi, M (12)
Vitart, V (12)
Sabanayagam, C (12)
Ting, Yuan-Sen (12)
Schlesinger, Kathari ... (12)
Horner, Jonathan (12)
show less...
University
Karolinska Institutet (81)
Uppsala University (66)
Lund University (47)
University of Gothenburg (43)
Stockholm University (26)
Umeå University (17)
show more...
Linköping University (11)
Högskolan Dalarna (9)
Chalmers University of Technology (7)
University of Skövde (5)
Malmö University (3)
Linnaeus University (3)
Karlstad University (3)
Swedish University of Agricultural Sciences (3)
Kristianstad University College (2)
Royal Institute of Technology (2)
Luleå University of Technology (1)
Örebro University (1)
Jönköping University (1)
Stockholm School of Economics (1)
University of Borås (1)
show less...
Language
English (157)
Research subject (UKÄ/SCB)
Medical and Health Sciences (83)
Natural sciences (45)
Engineering and Technology (6)
Social Sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view