SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cullen B) srt2:(2015-2019)"

Search: WFRF:(Cullen B) > (2015-2019)

  • Result 61-66 of 66
Sort/group result
   
EnumerationReferenceCoverFind
61.
  • Strawbridge, RJ, et al. (author)
  • Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression
  • 2018
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 178-
  • Journal article (peer-reviewed)abstract
    • Risk-taking behaviour is an important component of several psychiatric disorders, including attention-deficit hyperactivity disorder, schizophrenia and bipolar disorder. Previously, two genetic loci have been associated with self-reported risk taking and significant genetic overlap with psychiatric disorders was identified within a subsample of UK Biobank. Using the white British participants of the full UK Biobank cohort (n = 83,677 risk takers versus 244,662 controls) for our primary analysis, we conducted a genome-wide association study of self-reported risk-taking behaviour. In secondary analyses, we assessed sex-specific effects, trans-ethnic heterogeneity and genetic overlap with psychiatric traits. We also investigated the impact of risk-taking-associated SNPs on both gene expression and structural brain imaging. We identified 10 independent loci for risk-taking behaviour, of which eight were novel and two replicated previous findings. In addition, we found two further sex-specific risk-taking loci. There were strong positive genetic correlations between risk-taking and attention-deficit hyperactivity disorder, bipolar disorder and schizophrenia. Index genetic variants demonstrated effects generally consistent with the discovery analysis in individuals of non-British White, South Asian, African-Caribbean or mixed ethnicity. Polygenic risk scores comprising alleles associated with increased risk taking were associated with lower white matter integrity. Genotype-specific expression pattern analyses highlighted DPYSL5, CGREF1 and C15orf59 as plausible candidate genes. Overall, our findings substantially advance our understanding of the biology of risk-taking behaviour, including the possibility of sex-specific contributions, and reveal consistency across ethnicities. We further highlight several putative novel candidate genes, which may mediate these genetic effects.
  •  
62.
  • Strawbridge, RJ, et al. (author)
  • Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort
  • 2018
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 39-
  • Journal article (peer-reviewed)abstract
    • Risk-taking behaviour is a key component of several psychiatric disorders and could influence lifestyle choices such as smoking, alcohol use, and diet. As a phenotype, risk-taking behaviour therefore fits within a Research Domain Criteria (RDoC) approach, whereby identifying genetic determinants of this trait has the potential to improve our understanding across different psychiatric disorders. Here we report a genome-wide association study in 116,255 UK Biobank participants who responded yes/no to the question “Would you consider yourself a risk taker?” Risk takers (compared with controls) were more likely to be men, smokers, and have a history of psychiatric disorder. Genetic loci associated with risk-taking behaviour were identified on chromosomes 3 (rs13084531) and 6 (rs9379971). The effects of both lead SNPs were comparable between men and women. The chromosome 3 locus highlights CADM2, previously implicated in cognitive and executive functions, but the chromosome 6 locus is challenging to interpret due to the complexity of the HLA region. Risk-taking behaviour shared significant genetic risk with schizophrenia, bipolar disorder, attention-deficit hyperactivity disorder, and post-traumatic stress disorder, as well as with smoking and total obesity. Despite being based on only a single question, this study furthers our understanding of the biology of risk-taking behaviour, a trait that has a major impact on a range of common physical and mental health disorders.
  •  
63.
  •  
64.
  • Ward, J, et al. (author)
  • Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia
  • 2017
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:11, s. 1264-
  • Journal article (peer-reviewed)abstract
    • Mood instability is a core clinical feature of affective and psychotic disorders. In keeping with the Research Domain Criteria approach, it may be a useful construct for identifying biology that cuts across psychiatric categories. We aimed to investigate the biological validity of a simple measure of mood instability and evaluate its genetic relationship with several psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, attention deficit hyperactivity disorder (ADHD), anxiety disorder and post-traumatic stress disorder (PTSD). We conducted a genome-wide association study (GWAS) of mood instability in 53,525 cases and 60,443 controls from UK Biobank, identifying four independently associated loci (on chromosomes 8, 9, 14 and 18), and a common single-nucleotide polymorphism (SNP)-based heritability estimate of ~8%. We found a strong genetic correlation between mood instability and MDD (rg = 0.60, SE = 0.07, p = 8.95 × 10−17) and a small but significant genetic correlation with both schizophrenia (rg = 0.11, SE = 0.04, p = 0.01) and anxiety disorders (rg = 0.28, SE = 0.14, p = 0.04), although no genetic correlation with BD, ADHD or PTSD was observed. Several genes at the associated loci may have a role in mood instability, including the DCC netrin 1 receptor (DCC) gene, eukaryotic translation initiation factor 2B subunit beta (eIF2B2), placental growth factor (PGF) and protein tyrosine phosphatase, receptor type D (PTPRD). Strengths of this study include the very large sample size, but our measure of mood instability may be limited by the use of a single question. Overall, this work suggests a polygenic basis for mood instability. This simple measure can be obtained in very large samples; our findings suggest that doing so may offer the opportunity to illuminate the fundamental biology of mood regulation.
  •  
65.
  • Ward, J, et al. (author)
  • Novel genome-wide associations for anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure
  • 2019
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 9:1, s. 327-
  • Journal article (peer-reviewed)abstract
    • Anhedonia is a core symptom of several psychiatric disorders but its biological underpinnings are poorly understood. We performed a genome-wide association study of state anhedonia in 375,275 UK Biobank participants and assessed for genetic correlation between anhedonia and neuropsychiatric conditions (major depressive disorder, schizophrenia, bipolar disorder, obsessive compulsive disorder and Parkinson’s Disease). We then used a polygenic risk score approach to test for association between genetic loading for anhedonia and both brain structure and brain function. This included: magnetic resonance imaging (MRI) assessments of total grey matter volume, white matter volume, cerebrospinal fluid volume, and 15 cortical/subcortical regions of interest; diffusion tensor imaging (DTI) measures of white matter tract integrity; and functional MRI activity during an emotion processing task. We identified 11 novel loci associated at genome-wide significance with anhedonia, with a SNP heritability estimate (h2SNP) of 5.6%. Strong positive genetic correlations were found between anhedonia and major depressive disorder, schizophrenia and bipolar disorder; but not with obsessive compulsive disorder or Parkinson’s Disease. Polygenic risk for anhedonia was associated with poorer brain white matter integrity, smaller total grey matter volume, and smaller volumes of brain regions linked to reward and pleasure processing, including orbito-frontal cortex. In summary, the identification of novel anhedonia-associated loci substantially expands our current understanding of the biological basis of state anhedonia and genetic correlations with several psychiatric disorders confirm the utility of this phenotype as a transdiagnostic marker of vulnerability to mental illness. We also provide the first evidence that genetic risk for state anhedonia influences brain structure, including in regions associated with reward and pleasure processing.
  •  
66.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 61-66 of 66

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view