SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Torino Nico 1982) srt2:(2019)"

Search: WFRF:(Torino Nico 1982) > (2019)

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Torino, Nico, 1982 (author)
  • Beyond average crystal structures: understanding extended and local environments in proton-conducting Sc-substituted BaTiO3 perovskites
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Proton conducting ceramics are very promising for applications concerned with energy sourcing with cleaner, safer, more abundant and cheaper alternatives to fossil fuels. These materials are still in development and advances in the field depend on a better understanding of the role of defects, their identification and location in the host framework, and the assessment of their short- and long-range dynamics and kinetics. With that aim, the work included in this thesis focussed on investigations of the effect of Sc substitution on the long- and short-range structure, oxygen vacancies and protons distribution, and their link to proton conductivity, in BaTiO3 materials. The system BaTi1–xScxO3–x/2 with x = ⅙, 20, 50 and 70 was studied with a combination of thermogravimetric, scattering, spectroscopic and computational methods.   Neutron powder diffraction (NPD) provided the first representations of hexagonal and cubic members of the solid solution BaTiO3-Sc2O3. They revealed the different ordering of oxygen vacancies, protons and transition metal ions in the two structural types as a function of the Sc concentration and justified the large improvement in proton conductivity from hexagonal to cubic structures, due to the localised nature of protonic defects in the former. The combination of thermogravimetric and NPD methods applied simultaneously to study the dehydration of cubic members of the series suggested that vacancy-vacancy interactions are attenuated by higher Sc levels where the size difference between oxygen vacancy and protonic defect is larger. The Reverse Monte Carlo method revealed the local ordering of Ti in cubic types, a local symmetry-breaking effect that has repercussions on the physical properties of these materials, causing anomalously small volume changes upon hydration in low-Sc phases. Computer simulations, and spectroscopic methods employing radiation (IR, Raman) and neutrons (Inelastic Neutron Scattering) provided further insight into the structural features and offered a detailed characterisation of the proton sites and their dynamics, suggesting that higher Sc levels are associated to weaker hydrogen bonding and to configurations more favourable for proton transport.    The present work contributed further understanding of the factors influencing proton transport in highly defective perovskite-structured materials. It was found that high Sc concentrations in the cubic host lattice of BaTiO3 yield highly stable phases where transport of protonic defects is favoured by a crystal site of high symmetry and multiplicity. Alongside the study of the peculiarities of the BTS system, recommendations for candidate systems identification and doping strategy were provided.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
doctoral thesis (1)
Type of content
other academic/artistic (1)
Author/Editor
Torino, Nico, 1982 (1)
University
Chalmers University of Technology (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view