SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0304 3835 OR L773:1872 7980 srt2:(2020-2024)"

Search: L773:0304 3835 OR L773:1872 7980 > (2020-2024)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Hases, Linnea, et al. (author)
  • Intestinal estrogen receptor beta suppresses colon inflammation andtumorigenesis in both sexes
  • 2020
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835 .- 1872-7980. ; 492, s. 54-62
  • Journal article (peer-reviewed)abstract
    • Estrogen hormones protect against colorectal cancer (CRC) and a preventative role of estrogen receptor beta (ERβ) on CRC has been supported using full knockout animals. However, it is unclear through which cells or organ ERβ mediates this effect. To investigate the functional role of intestinal ERβ during colitis-associated CRC we used intestine-specific ERβ knockout mice treated with azoxymethane and dextran sodium sulfate, followed by ex vivo organoid culture to corroborate intrinsic effects. We explored genome-wide impact on TNFα signaling using human CRC cell lines and chromatin immunoprecipitation assay to mechanistically characterize the regulation of ERβ. Increased tumor formation in males and tumor size in females was noted upon intestine-specific ERβ knockout, accompanied by enhanced local expression of TNFα, deregulation of key NFκB targets, and increased colon ulceration. Unexpectedly, we noted especially strong effects in males. We corroborated that intestinal ERβ protects against TNFα-induced damage intrinsically, and characterized an underlying genome-wide signaling mechanism in CRC cell lines whereby ERβ binds to cis-regulatory chromatin areas of key NFκB regulators. Our results support a protective role of intestinal ERβ against colitis-associated CRC, proposing new therapeutic strategies.
  •  
3.
  •  
4.
  •  
5.
  • Kirti, Apoorv, et al. (author)
  • Nanoparticle-mediated metronomic chemotherapy in cancer : A paradigm of precision and persistence
  • 2024
  • In: Cancer Letters. - : Elsevier. - 0304-3835 .- 1872-7980. ; 594
  • Journal article (peer-reviewed)abstract
    • Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
  •  
6.
  • Liu, Jiale, et al. (author)
  • STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs)
  • 2024
  • In: Cancer Letters. - : Elsevier. - 0304-3835 .- 1872-7980. ; 588
  • Journal article (peer-reviewed)abstract
    • Chemotherapy resistance in ovarian cancer hampers cure rates, with cancer-associated fibroblasts (CAFs) playing a pivotal role. Despite their known impact on cancer progression and chemotherapy resistance, the specific mechanism by which CAFs regulate the tumor inflammatory environment remains unclear. This study reveals that cisplatin facilitates DNA transfer from ovarian cancer cells to CAFs, activating the CGAS-STING-IFNB1 pathway in CAFs and promoting IFNB1 release. Consequently, this reinforces cancer cell resistance to platinum drugs. High STING expression in the tumor stroma was associated with a poor prognosis, while inhibiting STING expression enhanced ovarian cancer sensitivity. Understanding the relevance of the CGAS-STING pathway in CAFs for platinum resistance suggests targeting STING as a promising combination therapy for ovarian cancer, providing potential avenues for improved treatment outcomes.
  •  
7.
  •  
8.
  • Miyashita, Naoya, et al. (author)
  • ASCL1 promotes tumor progression through cell-autonomous signaling and immune modulation in a subset of lung adenocarcinoma
  • 2020
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835 .- 1872-7980. ; 489, s. 121-132
  • Journal article (peer-reviewed)abstract
    • The master regulator of neuroendocrine differentiation, achaete-scute complex homolog 1 (ASCL1) defines a subgroup of lung adenocarcinoma. However, the mechanistic role of ASCL1 in lung tumorigenesis and its relation to the immune microenvironment is principally unknown. Here, the immune landscape of ASCL1-positive lung adenocarcinomas was characterized by immunohistochemistry. Furthermore, ASCL1 was transduced in mouse lung adenocarcinoma cell lines and comparative RNA-sequencing and secretome analyses were performed. The effects of ASCL1 on tumorigenesis were explored in an orthotopic syngeneic transplantation model.ASCL1-positive lung adenocarcinomas revealed lower infiltration of CD8+, CD4+, CD20+, and FOXP3+ lymphocytes and CD163+ macrophages indicating an immune desert phenotype. Ectopic ASCL1 upregulated cyclin transcript levels, stimulated cell proliferation, and enhanced tumor growth in mice. ASCL1 suppressed secretion of chemokines, including CCL20, CXCL2, CXCL10, and CXCL16, indicating effects on immune cell trafficking. In accordance with lower lymphocytes infiltration, ASCL1-positive lung adenocarcinomas demonstrated lower abundance of CXCR3-and CCR6-expressing cells.In conclusion, ASCL1 mediates its tumor-promoting effect not only through cell-autonomous signaling but also by modulating chemokine production and immune responses. These findings suggest that ASCL1-positive tumors represent a clinically relevant lung cancer entity.
  •  
9.
  • Song, Dandan, et al. (author)
  • Blocking Fra-1 sensitizes triple-negative breast cancer to PARP inhibitor
  • 2021
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835 .- 1872-7980. ; 506, s. 23-34
  • Journal article (peer-reviewed)abstract
    • The AP-1 member Fra-1 is overexpressed in TNBC and plays crucial roles in tumor progression and treatment resistance. In a previous large-scale screen, we identified PARP1 to be among 118 proteins that interact with endogenous chromatin-bound Fra-1 in TNBC cells. PARP1 inhibitor (olaparib) is currently in clinical use for treatment of BRCA-mutated TNBC breast cancer. Here, we demonstrate that the Fra-1-PARP1 interaction impacts the efficacy of olaparib treatment. We show that PARP1 interacts with and downregulates Fra-1, thereby reducing AP-1 transcriptional activity. Olaparib treatment, or silencing of PARP1, consequently, increases Fra-1 levels and enhances its transcriptional activity. Increased Fra-1 can have adverse effect, including treatment resistance. We also found that a large fraction of PARP1-regulated genes was dependent on Fra-1. We show that by inhibiting Fra-1/AP-1, non-BRCA-mutated TNBC cells can become sensitized to olaparib treatment. We identify that high PARP1 expression is indicative of a poor clinical outcome in breast cancer patients overall (P = 0.01), but not for HER-2 positive patients. In conclusion, by exploring the functionality of the Fra-1 and PARP1 interaction, we propose that targeting Fra-1 could serve as a combinatory therapeutic approach to improve olaparib treatment outcome for TNBC patients.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Rivera-Ramos, Alberto, et al. (author)
  • Galectin-3 depletion tames pro-tumoural microglia and restrains cancer cells growth
  • 2024
  • In: Cancer Letters. - 0304-3835. ; 591
  • Journal article (peer-reviewed)abstract
    • Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.
  •  
15.
  • Satapathy, Shakti Ranjan, et al. (author)
  • Cysteinyl leukotriene receptor 1 promotes 5-fluorouracil resistance and resistance-derived stemness in colon cancer cells
  • 2020
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835. ; 488, s. 50-62
  • Journal article (peer-reviewed)abstract
    • Colon cancer is a therapy-resistant cancer with a low 5-year survival frequency. The drug 5-fluorouracil (5-FU) has been used as a first-line therapy in metastatic colon cancer in combination with leucovorin or oxaliplatin with a >40% resistance rate. High CysLT1R expression in tumors is associated with poor survival of colon cancer patients. We sought to examine the role of CysLT1R in 5-FU resistance and established 5-FU-resistant (5-FU-R) colon cancer cells. These 5-FU-R-cells expressed increased levels of CysLT1R and showed increased survival and migration compared to nonresistant cells. Increases in thymidylate synthase and active β-catenin were also observed in the 5-FU-R-cells. LTD4/CysLT1R signaling was further increased and abolished after CYSLTR1 CRISPR-Cas9-knockdown and reduced in CysLT1R-doxycycline-knockdown experiments and CysLT1R-antagonist montelukast/5-FU-treated cells. Montelukast and 5-FU resulted in synergistic effects by reducing HT-29 cell and 5-FU-R-HT-29 cell migration and zebrafish xenograft metastasis. An increase in the stem cell markers in 5-FU-R-cells and 5-FU-R-cell-derived colonospheres and in CysLT1R-Dox-knockdown cells increased colonosphere formation and stem cell markers was noticed after 5-FU treatment. IL-4-mediated stemness in both HT-29-colonospheres and 5-FU-R-cell derived colonospheres was abolished by montelukast or montelukast + 5-FU-treatment. Targeting CysLT1R signaling by montelukast might reverse drug resistance and decrease resistance-derived stemness in colon cancer patients.
  •  
16.
  • Yusenko, M. V., et al. (author)
  • Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells
  • 2020
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835. ; 479, s. 61-70
  • Journal article (peer-reviewed)abstract
    • The master transcriptional regulator MYB is a key oncogenic driver in several human neoplasms, particularly in acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). MYB is therefore an attractive target for drug development in MYB-activated malignancies. Here, we employed a MYB-reporter cell line and identified the polyether ionophores monensin, salinomycin, and nigericin as novel inhibitors of MYB activity. As a proof of principle, we show that monensin affects the expression of a significant number of MYB-regulated genes in AML cells and causes down-regulation of MYB expression, loss of cell viability, and induction of differentiation and apoptosis. Furthermore, monensin significantly inhibits proliferation of primary murine AML cells but not of normal hematopoietic progenitors, reflecting a high MYB-dependence of leukemic cells and underscoring the efficacy of monensin in MYB-activated malignancies. Importantly, monensin also suppressed the viability and non-adherent growth of adenoid cystic carcinoma (ACC) cells expressing MYB-NFIB fusion oncoproteins. Our data show that a single compound with significant MYB-inhibitory activity is effective against malignant cells from two distinct MYB-driven human neoplasms. Hence, monensin and related compounds are promising molecular scaffolds for development of novel MYB inhibitors.
  •  
17.
  • Yusenko, M. V., et al. (author)
  • Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner
  • 2021
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835. ; 520, s. 132-142
  • Journal article (peer-reviewed)abstract
    • Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often considered un-druggable, recent work has demonstrated successful targeting of MYB by low molecular weight compounds. This has fueled the notion that inhibition of MYB has potential as a therapeutic approach against MYB-driven malignancies. Here, we have used a MYB reporter cell line to screen a library of FDA-approved drugs for novel MYB inhibitors. We demonstrate that proteasome inhibitors have significant MYB-inhibitory activity, prompting us to characterize the proteasome inhibitor oprozomib in more detail. Oprozomib was shown to interfere with the ability of the co-activator p300 to stimulate MYB activity and to exert anti-proliferative effects on human AML and ACC cells. Overall, our work demonstrated suppression of oncogenic MYB activity as a novel result of proteasome inhibition. © 2021 Elsevier B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view