SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andreu Ana) srt2:(2020)"

Search: WFRF:(Andreu Ana) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Feng, Shaohong, et al. (author)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
2.
  • García-Carrizo, Francisco, et al. (author)
  • Regulation of thermogenic capacity in brown and white adipocytes by the prebiotic high-esterified pectin and its postbiotic acetate
  • 2020
  • In: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 44:3, s. 715-726
  • Journal article (peer-reviewed)abstract
    • Objectives High-esterified pectin (HEP) is a prebiotic able to modulate gut microbiota, associated with health-promoting metabolic effects in glucose and lipid metabolism and adipostatic hormone sensitivity. Possible effects regulating adaptive thermogenesis and energy waste are poorly known. Therefore, we aimed to study how physiological supplementation with HEP is able to affect microbiota, energy metabolism and adaptive thermogenic capacity, and to contribute to the healthier phenotype promoted by HEP supplementation, as previously shown. We also attempted to decipher some of the mechanisms involved in the HEP effects, including in vitro experiments.Subjects and experimental design We used a model of metabolic malprogramming consisting of the progeny of rats with mild calorie restriction during pregnancy, both under control diet and an obesogenic (high-sucrose) diet, supplemented with HEP, combined with in vitro experiments in primary cultured brown and white adipocytes treated with the postbiotic acetate.Results Our main findings suggest that chronic HEP supplementation induces markers of brown and white adipose tissue thermogenic capacity, accompanied by a decrease in energy efficiency, and prevention of weight gain under an obesogenic diet. We also show that HEP promotes an increase in beneficial bacteria in the gut and peripheral levels of acetate. Moreover, in vitro acetate can improve adipokine production, and increase thermogenic capacity and browning in brown and white adipocytes, respectively, which could be part of the protection mechanism against excess weight gain observed in vivo.Conclusion HEP and acetate stand out as prebiotic/postbiotic active compounds able to modulate both brown-adipocyte metabolism and browning and protect against obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view