SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Assmann Karen) srt2:(2019)"

Search: WFRF:(Assmann Karen) > (2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Assmann, Karen, et al. (author)
  • Warm. Circumpolar Deep Water at the Western Getz Ice Shelf Front, Antarctica
  • 2019
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:2, s. 870-878
  • Journal article (peer-reviewed)abstract
    • The Getz Ice Shelf is one of the largest sources of fresh water from ice shelf basal melt in Antarctica. We present new observations from three moorings west of Siple Island 2016-2018. All moorings show a persistent flow of modified Circumpolar Deep Water toward the western Getz Ice Shelf. Unmodified Circumpolar Deep Water with temperatures up to 1.5 degrees C reaches the ice shelf front in frequent episodes. These represent the warmest water observed at any ice shelf front in the Amundsen Sea. Mean currents within the warm bottom layer of 18-20 cm/s imply an advection time scale of 7 days from shelf break to ice shelf front. Zonal wind stress at the shelf break affects heat content at the ice shelf front on weekly to monthly time scales. Our 2-year mooring records also evince that upwelling over the shelf break controls thermocline depth on subannual to annual time scales. Plain Language Summary The recent retreat of the West Antarctic Ice Sheet has been linked to changes in the transport of warm ocean water up to 1.5 degrees C to the floating ice shelves in the Amundsen Sea. One of these is the Getz Ice Shelf that produces one of the largest amounts of ice shelf melt water in Antarctica. To measure how much ocean heat is transported toward this ice shelf, we deployed a series of temperature, salinity, and current sensors at its western end from 2016 to 2018. We find a constant flow of warm water toward the ice shelf cavity. Comparing our ocean observations with wind data from the area, we found that stronger easterly winds in the area make it harder for the warm water to reach the ice shelf front by depressing the warm bottom layer over the shelf break. Climate projections indicate that these easterlies will weaken in future, making it easier for the warm water to reach the ice shelf base. Gradients in the wind field over the shelf break control the thickness of the warm layer on longer time scales. This provides the missing ocean evidence for previous studies that have linked this wind mechanism to ice sheet changes.
  •  
2.
  • Newman, Louise, et al. (author)
  • Delivering sustained, coordinated and integrated observations of the Southern Ocean for global impact
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Research review (peer-reviewed)abstract
    • The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and deliver the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress towards addressing the need for sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths more than 2000 m, the air-sea-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, platform interrogation and data-transmission technologies, modeling frameworks, and internationally agreed sampling requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, towards achieving the SOOS vision and delivering essential data to all end users.
  •  
3.
  • Webber, B. G. M., et al. (author)
  • The Impact of Overturning and Horizontal Circulation in Pine Island Trough on Ice Shelf Melt in the Eastern Amundsen Sea
  • 2019
  • In: Journal of Physical Oceanography. - : American Meteorological Society. - 0022-3670 .- 1520-0485. ; 49:1, s. 63-83
  • Journal article (peer-reviewed)abstract
    • The ice shelves around the Amundsen Sea are rapidly melting as a result of the circulation of relatively warm ocean water into their cavities. However, little is known about the processes that determine the variability of this circulation. Here we use an ocean circulation model to diagnose the relative importance of horizontal and vertical (overturning) circulation within Pine Island Trough, leading to Pine Island and Thwaites ice shelves. We show that melt rates and southward Circumpolar Deep Water (CDW) transports covary over large parts of the continental shelf at interannual to decadal time scales. The dominant external forcing mechanism for this variability is Ekman pumping and suction on the continental shelf and at the shelf break, in agreement with previous studies. At the continental shelf break, the southward transport of CDW and heat is predominantly barotropic. Farther south within Pine Island Trough, northward and southward barotropic heat transports largely cancel, and the majority of the net southward temperature transport is facilitated by baroclinic and overturning circulations. The overturning circulation is related to water mass transformation and buoyancy gain on the shelf that is primarily facilitated by freshwater input from basal melting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view