SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Azad A) srt2:(2015-2019)"

Search: WFRF:(Azad A) > (2015-2019)

  • Result 1-25 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Law, Philip J., et al. (author)
  • Association analyses identify 31 new risk loci for colorectal cancer susceptibility
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.
  •  
8.
  • Adams, Charleen, et al. (author)
  • Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study
  • 2019
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 28:1, s. 208-216
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Whether associations between circulating metabolites and prostate cancer are causal is unknown. We report on the largest study of metabolites and prostate cancer (2,291 cases and 2,661 controls) and appraise causality for a subset of the prostate cancer-metabolite associations using two-sample Mendelian randomization (MR).MATERIALS AND METHODS: The case-control portion of the study was conducted in nine UK centres with men aged 50-69 years who underwent prostate-specific antigen (PSA) screening for prostate cancer within the Prostate testing for cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.RESULTS: Thirty-five metabolites were strongly associated with prostate cancer (p <0.0014, multiple-testing threshold). These fell into four classes: i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); ii) fatty acids and ratios; iii) amino acids; iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.CONCLUSIONS: We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.IMPACT: The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
  •  
9.
  • Matejcic, Marco, et al. (author)
  • Germline variation at 8q24 and prostate cancer risk in men of European ancestry
  • 2018
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 x 10(-15)), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95% CI = 3.62-4.40) greater risk compared to the population average. These 12 variants account for similar to 25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.
  •  
10.
  • Delbari, MT, et al. (author)
  • Clinical Manifestations, Immunological Characteristics and Genetic Analysis of Patients with Hyper-Immunoglobulin M Syndrome in Iran
  • 2019
  • In: International archives of allergy and immunology. - : S. Karger AG. - 1423-0097 .- 1018-2438. ; 180:1, s. 52-63
  • Journal article (peer-reviewed)abstract
    • <b><i>Background:</i></b> Hyper-immunoglobulin M (HIGM) syndrome is a rare heterogeneous group of primary immunodeficiency disorders characterized by low or absent serum levels of IgG and IgA along with normal or elevated serum levels of IgM. <b><i>Methods:</i></b> Clinical and immunological data were collected from the 75 patients’ medical records diagnosed in Children’s Medical Center affiliated to Tehran University Medical Sciences and other Universities of Medical Sciences in Iran. Among 75 selected patients, 48 patients (64%) were analyzed genetically using targeted and whole-exome sequencing. <b><i>Results:</i></b> The ratio of male to female was 2.9:1. The median age at the onset of the disease, time of diagnosis, and diagnostic delay were 10.5, 50, and 24 months, respectively. Pneumonia and lower respiratory tract infections (61.3%) were the most common complications. Responsible genes were identified in 35 patients (72.9%) out 48 ge<i>netically</i> analyzed patients. <i>Cluster of differentiation 40 ligand</i> gene was the most mutated gene observed in 24 patients (68.5%) followed by <i>activation-induced cytidine deaminase</i> gene in 7 patients, <i>lipopolysaccharide-responsive and beige-like anchor</i> (1 patient), <i>nuclear factor-kappa-B essential modulator</i> (1 patient), <i>phosphoinositide-3-kinase regulatory subunit 1</i> (1 patient), and <i>nuclear factor kappa B subunit 1</i> (1 patient) genes. Nineteen (25.3%) patients died during the study period, and pneumonia was the major cause of death occurred in 6 (31.6%) patients. <b><i>Conclusion:</i></b> Physicians in our country should carefully pay attention to respiratory tract infections and pneumonia, particularly in patients with a positive family history. Further investigations are required for detection of new genes and pathways resulting in HIGM phenotype.
  •  
11.
  • Wu, Lang, et al. (author)
  • Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk : A Transcriptome-Wide Association Study in over 140,000 European Descendants
  • 2019
  • In: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 79:13, s. 3192-3204
  • Journal article (peer-reviewed)abstract
    • Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 x 10(-6), a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 x 10(-6) after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. Significance: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.
  •  
12.
  • Abdalla, A. M., et al. (author)
  • Nanomaterials for solid oxide fuel cells: A review
  • 2018
  • In: Renewable and Sustainable Energy Reviews. - : Elsevier BV. - 1879-0690 .- 1364-0321. ; 82, s. 353-368
  • Research review (peer-reviewed)abstract
    • Nanotechnology is utilized well in the development and improvement of the performance in Solid Oxide Fuel Cells (SOFCs). The high operating temperature of SOFCs (700–900 °C) has resulted in serious demerits regarding their overall performance and durability. Therefore, the operating temperature has been reduced to an intermediate temperature range of approximately 400–700 °C which improved performance and, subsequently, commercialized SOFCs as portable power sources. However, at reduced temperature, challenges such as an increase in internal resistance of the fuel cell components arise. Although, this may not be as serious as problems encountered at high temperature, it still significantly affects the performance of SOFCs. This review paper addresses the work of researchers in the application of nanotechnology in fabricating SOFCs through distinct methods. These methods have successfully omitted or at least reduced the internal resistance and showed considerable improvement in power density of the SOFCs at reduced temperatures.
  •  
13.
  • Afif, A., et al. (author)
  • Advanced materials and technologies for hybrid supercapacitors for energy storage – A review
  • 2019
  • In: Journal of Energy Storage. - : Elsevier BV. - 2352-152X. ; 25:October 2019
  • Research review (peer-reviewed)abstract
    • Supercapacitors have become the most significant energy conversion and storage system in recent renewable and sustainable nanotechnology. Due to its large energy capacity and supply with relatively short time and longer lifetime, supercapacitors breakthrough in advance energy applications. This review presents a comparative study of different materials, working principles, analysis, applications, advantages and disadvantages of various technologies available for supercapacitors. The aim of this article is to discuss the possibility of hybrid supercapacitor for the next generation of energy technology. The development of composite materials containing a wide range of active constituents (e.g., graphene, activated carbon, transition metals, metal oxides, perovskites and conducting polymers) by in-situ hybridization and ex-situ recombination is also discussed. This review consecrated largely the contribution of combining all materials (electrode and electrolyte) and their synthesis process and electrochemical performance. Enduringly, the potential issues and the perspectives for future research based on hybrid supercapacitors in energy applications are also presented.
  •  
14.
  • Afif, A., et al. (author)
  • Structural and electrochemical characterization of BaCe0.7Zr0.2Y0.05Zn0.05O3 as an electrolyte for SOFC-H
  • 2016
  • In: IOP Conference Series: Materials Science and Engineering. - 1757-8981 .- 1757-899X. ; 121:1
  • Conference paper (peer-reviewed)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.2Y0.05Zn0.05O3 (BCZYZn5) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. BaCe0.7Zr0.2Y0.05Zn0.05O3 shows cell parameter a = 4.3452(9) Å. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.276 × 10-3 Scm-1 and 0.204 × 10-3 Scm-1 at 600°C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn5 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
15.
  • Afif, A., et al. (author)
  • Structural study and proton conductivity in BaCe0.7Zr0.25-xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)
  • 2016
  • In: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 41:27, s. 11823-11831
  • Journal article (peer-reviewed)abstract
    • Solid oxide fuel cell (SOPC) has been considered to generate power represented by conductivity. Zinc doped Barium Cerium Zirconium Yttrium oxide (BCZYZn) has been found to offer high protonic conductivity and high stability as being electrolyte for proton conducting SOFCs. In this study, we report a new series of proton conducting materials, BaCe0.7Zr0.25-xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 and 0.25). The materials were synthesized by solid state reaction route and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal expansion, particle size and impedance spectroscopy (IS). Rietveld analysis of the XRD data reveal a cubic perovskite structure with Pm-3m space group up to composition x = 0.15. For x = 0.15 and 0.20, the materials have structural phase change to orthorhombic in the Pbnm space group. Scanning electron microscopy images show high density materials. Thermal expansion measurements show that the thermal expansion coefficient is in the range 10.0-11.0 x 10(-6)/degrees C. Impedance spectroscopy shows higher ionic conduction under wet condition compared to dry condition. Y content of 25% (BCZYZn25) exhibits highest conductivity of 1.84 x 10(-2) S/cm in wet Argon. This study indicated that perovskite electrolyte BCZYZn is promising material for the next generation of intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
16.
  • Azad, A. K., et al. (author)
  • Crystallographic and Magnetic Properties of the Spinel-type Ferrites ZnxCo1-xFe2O4 (0.0
  • 2015
  • In: AIP Conference Proceedings. - : AIP Publishing LLC. - 1551-7616 .- 0094-243X. - 9780735413047 ; 1660
  • Conference paper (peer-reviewed)abstract
    • Ultrahigh frequencies (UHF) have applications in signal and power electronics to minimize product sizes, increase production quantity and lower manufacturing cost. In the UHF range of 300 MHz to 3 GHz, ferrimagnetic iron oxides (ferrites) are especially useful because they combine the properties of a magnetic material with that of an electrical insulator. Ferrites have much higher electrical resistivity than metallic ferromagnetic materials, resulting in minimization of the eddy current losses, and total penetration of the electromagnetic (EM) field. Hence ferrites are frequently applied as circuit elements, magnetic storage media like read/write heads, phase shifters and Faraday rotators. The electromagnetic properties of ferrites are affected by operating conditions such as field strength, temperature and frequency. The spinel system ZnxCo1-xFe2O4 (x= 0.0, 0.25, 0.50 and 0.75) has been prepared by the standard solid state sintering method. X-ray and neutron powder diffraction measurements were performed at room temperature. Neutron diffraction data analysis confirms the cubic symmetry corresponding to the space group Fd3m. The distribution of three cations Zn2+, Co2+ and Fe3+ over the spinel lattice and other crystallographic parameters like lattice constant, oxygen position parameter, overall temperature factor and occupancies of different ions in different lattice sites for the samples have been determined from the analysis of neutron diffraction data. The lattice constant increases with increasing Zn content in the system. The magnetic structure was found to be ferrimagnetic for the samples with x
  •  
17.
  •  
18.
  •  
19.
  • Abdalla, A. M., et al. (author)
  • NdBaMn2O5+delta layered perovskite as an active cathode material for solid oxide fuel cells
  • 2017
  • In: Ceramics International. - : Elsevier BV. - 0272-8842. ; 43:17, s. 15932-15938
  • Journal article (peer-reviewed)abstract
    • A layered perovskite, NdBaMn2O5+delta (NBMO), was synthesized by solid state reaction method in air. Rietveld analysis of X-Ray Diffraction (XRD) data showed the material crystallizing in orthorhombic symmetry (Pmmm space group). Scanning electron microscopy (SEM) was used to check the morphology and, the analysis of the micrographs exhibited a porous structure with in-situ growth of nanoparticles. Electrochemical Impedance Spectroscopy (EIS) measurements from 600 degrees C to 800 degrees C shows the highest conductivity value of 1.17 x 10(-1) S/cm obtained at 800 degrees C with low activation energy (Ea) of 0.3 eV in air. In 5% H-2/Ar gas mixture, the conductivity and activation energy values were 1.97 x 10(-2) S/cm and 0.4 eV, respectively at 800 degrees C. The DC conductivity measurements also showed that this material is highly conductive in air with a conductivity value of 0.75 S/cm at 850 degrees C. Dual chamber fuel cell measurements on Ni-YSZ/YSZ/NBMO cell using 5% H-2/Ar as fuel (from 700 degrees C to 800 degrees C) showed a maximum power density of 0.202 W/cm(2) at 800 degrees C. The relatively high conductivity of the material in air and low activation energy makes it a potential candidate as cathode for solid oxide fuel cells.
  •  
20.
  • Afif, A., et al. (author)
  • Electrochemical and structural characterization of BaCe 0.7 Zr 0.15 Y 0.1 Zn 0.05 O 3-δ as an electrolyte for SOFC-H
  • 2018
  • In: IET Conference Publications. ; 2018:CP750
  • Conference paper (peer-reviewed)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.15Y01Zn0.05O3-s (BCZYZn10) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. Rietveld analysis of BaCe07Zr0.15Y01Zn0.05O3-5 shows the unit cell parameter is a = 4.3582(7) A. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.004032 Scm-1 and 0.00164 Scm-1 at 600 °C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn10 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
21.
  • Afif, A., et al. (author)
  • Scheelite type Sr1−xBaxWO4 (x = 0.1, 0.2, 0.3) for possible application in Solid Oxide Fuel Cell electrolytes
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • © 2019, The Author(s). Polycrystalline scheelite type Sr1−xBaxWO4 (x = 0.1, 0.2 & 0.3) materials were synthesized by the solid state sintering method and studied with respect to phase stability and ionic conductivity under condition of technological relevance for SOFC applications. All compounds crystallized in the single phase of tetragonal scheelite structure with the space group of I41/a. Room temperature X-ray diffraction and subsequent Rietveld analysis confirms its symmetry, space group and structural parameters. SEM illustrates the highly dense compounds. Significant mass change was observed to prove the proton uptake at higher temperature by TG-DSC. All compound shows lower conductivity compared to the traditional BCZY perovskite structured materials. SBW with x = 0.3 exhibit the highest ionic conductivity among all compounds under wet argon condition which is 1.9 × 10−6 S cm−1 at 1000 °C. Since this scheelite type compounds show significant conductivity, the new series of SBW could serve in IT-SOFC as proton conducting electrolyte.
  •  
22.
  • Hossain, S., et al. (author)
  • Highly dense and chemically stable proton conducting electrolyte sintered at 1200 °C
  • 2018
  • In: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 43:2, s. 894-907
  • Journal article (peer-reviewed)abstract
    • The BaCe 0.7 Zr 0.1 Y 0.2−x Zn x O 3−δ (x = 0.05, 0.10, 0.15, 0.20) has been synthesized by the conventional solid state reaction method for application in protonic solid oxide fuel cell. The phase purity and lattice parameters of the materials have been studied by the room temperature X-ray diffraction (XRD). Scanning electron microscopy (SEM) has been done for check the morphology and grain growth of the samples. The chemical and mechanical stabilities have been done using thermogravimetric analysis (TGA) in pure CO 2 environment and thermomechanical analysis (TMA) in Argon atmosphere. The XRD of the materials show the orthorhombic crystal symmetry with Pbnm space group. The SEM images of the pellets show that the samples sintered at 1200 °C are highly dense. The XRD after TGA in CO 2 and thermal expansion measurements confirm the stability. The particles of the samples are in micrometer ranges and increasing Zn content decreases the size. The conductivity measurements have been done in 5% H 2 with Ar in dry and wet atmospheres. All the materials show high proton conductivity in the intermediate temperature range (400–700 °C). The maximum proton conductivity was found to be 1.0 × 10 −2 S cm −1 at 700 °C in wet atmosphere for x = 0.10. From our study, 10 wt % of Zn seems to be optimum at the B-site of the perovskite structure. All the properties studied here suggest it can be a promising candidate of electrolyte for IT-SOFCs.
  •  
23.
  • Radenahmad, N., et al. (author)
  • High conductivity and high density proton conducting Ba1-xSrxCe0.5Zr0.35Y0.1Sm0.05O3-delta (x=0.5, 0.7, 0.9, 1.0) perovskites for IT-SOFC
  • 2016
  • In: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 41:27, s. 11832-11841
  • Journal article (peer-reviewed)abstract
    • Solid oxide fuel cell (SOFC) has been achieving attention in term of possibility in variety of fuels. Proton conductor enhanced conventional oxide conducting electrolyte has become more and more interesting particularly in intermediate operating temperature. Combination of doped BaCeO3 and BaZrO3 by doping Sr, Y and Sm was studied as the series of Ba1-xSrxCe0.5Zr0.35Y0.1Sm0.05O3-delta (BSCZYSm) by varying composition x = 0.5, 0.7, 0.9 and 1.0. The X-ray analysis reveals right-shifted peaks due to changing in unit cell volume. The cell parameters and density decreased with increasing Sr content. Rietveld refinement shows that all compositions crystallize in the cubic symmetry in the space group Pm-3m. Thermogravimetric analysis on dried and hydrated samples under nitrogen show significant weight change to prove the proton uptake at higher temperature. Scanning electron microscopy shows that the density is higher than 90% for all samples. BSCZYSm with x = 0.5 shows the highest conductivity in wet argon condition which is 2.391 x 10(-3) S cm(-1) at 700 degrees C. Particle size of materials were examined and reveal average diameter of 5.8 mu m approximately.
  •  
24.
  • Radenahmad, N., et al. (author)
  • Proton-conducting electrolytes for direct methanol and direct urea fuel cells - A state-of-the-art review
  • 2016
  • In: Renewable and Sustainable Energy Reviews. - : Elsevier BV. - 1879-0690 .- 1364-0321. ; 57, s. 1347-1358
  • Research review (peer-reviewed)abstract
    • This review focuses on the protonicisuperprotonic electrolytes used for application in direct methanol and direct urea/urine fuel cells. Since, methanol has. high energy density, which is essential for portable direct methanol fuel cells, and is simpler to store and transport than conventional hydrogen as fuel. However, methanol is not readily available, which makes waste an attractive option as a fuel source, resulting in the development of direct urea fuel cells. Fuel cells that use waste that contains hydrogen, like waste water or urine, are attractive because of their potential to generate energy from low-cost, abundant sources.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 30
Type of publication
journal article (22)
conference paper (4)
research review (4)
Type of content
peer-reviewed (30)
Author/Editor
Azad, A. K. (14)
Eriksson, Sten, 1958 (11)
Radenahmad, N. (7)
Rahman, Habibur Seik ... (6)
Rezaei, N (5)
Abolhassani, H (5)
show more...
Aghamohammadi, A (5)
Parvaneh, N (5)
Aleyasin, S (5)
Jabbari-Azad, F (5)
Ahanchian, H (5)
Hossain, S. (4)
Khaw, Kay-Tee (4)
Cheraghi, T (4)
Gharagozlou, M (4)
Movahedi, M (4)
Azizi, G (4)
Yazdani, R (4)
Chavoshzadeh, Z (4)
Mahdaviani, SA (4)
Amin, R (4)
Faridhosseini, R (4)
Nabavi, M (4)
Sherkat, R (4)
Mohammadzadeh, I (4)
Ghaffari, J (4)
Shafiei, A (4)
Khoshkhui, M (4)
Wolk, Alicja (4)
Donovan, Jenny L (4)
Hamdy, Freddie C (4)
Neal, David E (4)
Eeles, Rosalind A (4)
Haiman, Christopher ... (4)
Kote-Jarai, Zsofia (4)
Schumacher, Fredrick ... (4)
Benlloch, Sara (4)
Muir, Kenneth (4)
Berndt, Sonja I (4)
Conti, David V (4)
Stevens, Victoria L (4)
Tangen, Catherine M (4)
Batra, Jyotsna (4)
Pashayan, Nora (4)
Schleutker, Johanna (4)
Albanes, Demetrius (4)
Cancel-Tassin, Geral ... (4)
Koutros, Stella (4)
Travis, Ruth C (4)
Lu, Yong-Jie (4)
show less...
University
Chalmers University of Technology (14)
Karolinska Institutet (14)
Uppsala University (6)
Linköping University (2)
Lund University (2)
Umeå University (1)
show more...
Stockholm University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (30)
Research subject (UKÄ/SCB)
Natural sciences (12)
Engineering and Technology (10)
Medical and Health Sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view