SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chalmers I) srt2:(2020-2024)"

Search: WFRF:(Chalmers I) > (2020-2024)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Dettwiler, Ines, et al. (author)
  • TIDE Analysis of Cryptosporidium Infections by gp60 Typing Reveals Obscured Mixed Infections
  • 2022
  • In: Journal of Infectious Diseases. - : Oxford University Press (OUP). - 0022-1899 .- 1537-6613. ; 225:4, s. 686-695
  • Journal article (peer-reviewed)abstract
    • Background. Cryptosporidiosis is a parasitic disease associated with potentially fatal diarrhea. The most used method in Cryptosporidium subtyping is based on the glycoprotein gene gp60. Each infection can represent a parasite population, and it is important to investigate the influence on transmission and virulence, as well as any impact on public health investigations. However, an easy-to-use method for detection is lacking. Methods. Here we report on the use of the bioinformatic program TIDE for deconvolution of gp60 chromatograms. A combination of single oocyst analysis and cloning successfully confirmed the within-sample parasite population diversity. Retrospective sample analysis was conducted on archived chromatograms. Results. For Cryptosporidium parvum, 8.6% multistrain infections (13 of 152) obscured by currently used consensus base calling were detected. Importantly, we show that single oocysts can harbor a mixed population of sporozoites. We also identified a striking dominance of unappreciated polymerase stutter artefacts in all 218 chromatograms analyzed, challenging the uncritical use of gp60 typing. Conclusions. We demonstrate the value of a new, easy-to-use analytical procedure for critical characterization of C. parvum and Cryptosporidium hominis in epidemiological investigations, also applicable retrospectively. Our findings illuminate the hidden parasite diversity with important implications for tracing zoonotic and person-to-person transmissions.
  •  
9.
  •  
10.
  • Gorski, Mathias, et al. (author)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Journal article (peer-reviewed)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
11.
  • Gorski, Mathias, et al. (author)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Journal article (peer-reviewed)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
12.
  •  
13.
  • Howells, Laura, et al. (author)
  • RECAP OF ATOPIC ECZEMA (RECAP) : ASSESSING ECZEMA CONTROL FROM THE PATIENT AND PARENT PERSPECTIVE
  • 2021
  • In: Acta Dermato-Venereologica. - : Medical journals Sweden AB. - 0001-5555 .- 1651-2057. ; 101:Suppl. 221, s. 29-29
  • Journal article (other academic/artistic)abstract
    • Background: The Harmonising Outcome Measures for Eczema (HOME) initiative recommend long-term control of eczema is measured in all clinical trials over 3 months in duration, but prior to this work, no instrument had been identified as suitable for inclusion in the core outcome set.Objective: To develop a ques-tionnaire to capture ‘eczema control’ from a patient/caregiver’s perspective.Methods: A mixed-methods approach was used to develop and refine a conceptual framework, generate, refine and select items and initial testing of the items. Questionnaire con-tent was generated and refined via a focus group, expert panel meetings, cognitive interviews and an online survey with people with eczema/caregivers. Impact analysis and multivariable li-near regression were used for item selection. The distribution of scores and construct validity were assessed.Results: Fourteen expert panel members (including patients, caregivers, healthcare professionals and methodologists) co-produced the instrument; with input from people with eczema/caregivers via a focus group (n = 6), cognitive interviews (n = 13) and an online survey (n = 330). Recap of atopic eczema (RECAP) is a seven-item questionnaire with a self-reported and caregiver-reported version. Initial testing suggested no floor or ceiling effects and good construct validity. Positive correlation with the Patient-Oriented Eczema Measure (POEM) was confirmed (r(258)=0.83, p < 0.001).Conclusions: RECAP is appropriate and feasible for measuring eczema control in clinical trials. Testing of measurement properties and translation to other languages is ongoing. RECAP has been recommended for inclusion in the HOME core outcome set for clinical trials and the HOME clinical practice set.
  •  
14.
  •  
15.
  •  
16.
  • Taquet, Maxime, et al. (author)
  • Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury
  • 2024
  • In: BRAIN COMMUNICATIONS. - 2632-1297. ; 6:1
  • Journal article (peer-reviewed)abstract
    • A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury. COVID-19 is associated with raised neural injury markers and neuropsychiatric sequelae. It is unknown whether post-acute neural injury is linked to neuropsychiatric symptoms. Taquet et al. showed that there was no robust link between the two, suggesting that neuropsychiatric symptoms of post-acute COVID illness are not caused by ongoing neural injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view