SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Christiaens Valentin) srt2:(2013-2014)"

Search: WFRF:(Christiaens Valentin) > (2013-2014)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Absil, Olivier, et al. (author)
  • The VORTEX project : first results and perspectives
  • 2014
  • In: Adaptive Optics Systems IV. - : SPIE. - 9780819496164
  • Conference paper (peer-reviewed)abstract
    • Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500: 1 in the L band, which translates into a raw contrast of about 6 x 10(-5) at 2 lambda/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0 : 1 0 0). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short-and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images.
  •  
4.
  • Delacroix, Christian, et al. (author)
  • Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 553, s. A98-
  • Journal article (peer-reviewed)abstract
    • Context. Coronagraphy is a powerful technique to achieve high contrast imaging, hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared nowadays remain largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications.Aims. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of  ~16% (3.5–4.1 μm).Methods. Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench.Results. A broadband raw null depth of 2 × 10-3 was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 × 10-5 (10.5 mag) at 2λ/D. This result is fully in line with our projections based on rigorous coupled wave analysis modelling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated.Conclusions. After years of technological developments, mid-infrared vector vortex coronagraphs have finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view