SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Danek A) "

Search: WFRF:(Danek A)

  • Result 1-25 of 56
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Bonham, LW, et al. (author)
  • Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10854-
  • Journal article (peer-reviewed)abstract
    • The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA’s relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.
  •  
4.
  •  
5.
  • Gao, YX, et al. (author)
  • Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis
  • 2020
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 12184-
  • Journal article (peer-reviewed)abstract
    • We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Ferrari, Raffaele, et al. (author)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • In: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
11.
  • Manzoni, Claudia, et al. (author)
  • Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia
  • 2024
  • In: American Journal of Human Genetics. - 0002-9297. ; 111:7, s. 1316-1329
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Gazzina, S, et al. (author)
  • Education modulates brain maintenance in presymptomatic frontotemporal dementia
  • 2019
  • In: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 90:10, s. 1124-1130
  • Journal article (peer-reviewed)abstract
    • Cognitively engaging lifestyles have been associated with reduced risk of conversion to dementia. Multiple mechanisms have been advocated, including increased brain volumes (ie, brain reserve) and reduced disease progression (ie, brain maintenance). In cross-sectional studies of presymptomatic frontotemporal dementia (FTD), higher education has been related to increased grey matter volume. Here, we examine the effect of education on grey matter loss over time.MethodsTwo-hundred twenty-nine subjects at-risk of carrying a pathogenic mutation leading to FTD underwent longitudinal cognitive assessment and T1-weighted MRI at baseline and at 1 year follow-up. The first principal component score of the graph-Laplacian Principal Component Analysis on 112 grey matter region-of-interest volumes was used to summarise the grey matter volume (GMV). The effects of education on cognitive performances and GMV at baseline and on the change between 1 year follow-up and baseline (slope) were tested by Structural Equation Modelling.ResultsHighly educated at-risk subjects had better cognition and higher grey matter volume at baseline; moreover, higher educational attainment was associated with slower loss of grey matter over time in mutation carriers.ConclusionsThis longitudinal study demonstrates that even in presence of ongoing pathological processes, education may facilitate both brain reserve and brain maintenance in the presymptomatic phase of genetic FTD.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 56

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view