SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Fanis A.) srt2:(2020-2022)"

Search: WFRF:(De Fanis A.) > (2020-2022)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jahnke, T., et al. (author)
  • Inner-Shell-Ionization-Induced Femtosecond Structural Dynamics of Water Molecules Imaged at an X-Ray Free-Electron Laser
  • 2021
  • In: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:4
  • Journal article (peer-reviewed)abstract
    • The ultrafast structural dynamics of water following inner-shell ionization is a crucial issue in high-energy radiation chemistry. We have exposed isolated water molecules to a short x-ray pulse from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we can image dissociation dynamics of individual molecules in unprecedented detail. We reveal significant molecular structural dynamics in H2O2+, such as asymmetric deformation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. We thus reconstruct several snapshots of structural dynamics at different time intervals, which highlight dynamical patterns that are relevant as initiating steps of subsequent radiation-damage processes.
  •  
2.
  • Ilchen, M., et al. (author)
  • X-ray spectroscopy on ultrafast-decaying core-excited atomic ions
  • 2020
  • In: Charge-exchange. - : IOP Publishing. - 1742-6588. ; 1412
  • Conference paper (peer-reviewed)abstract
    • Results from the first soft X-ray user experiment at the European XFEL on nonlinear photon-matter interaction will be presented. Angle-resolved electron time-of-flight spectroscopy employed at the AQS (Atomic- like Quantum Systems) endstation of the SQS (Small Quantum Systems) instrument reveals insight into the character of resonances in highly transient, core ionized neon ions, i.e. Ne:+ 1s12s22p6 → Ne+&∗ 1s02s22p6np, together with their respective relaxation dynamics. Enabled by the unique properties of the European XFEL, novel perspectives on efficient nonlinear spectroscopy will be discussed.
  •  
3.
  • Mazza, T., et al. (author)
  • Mapping Resonance Structures in Transient Core-Ionized Atoms
  • 2020
  • In: Physical Review X. - 2160-3308. ; 10:4
  • Journal article (peer-reviewed)abstract
    • The nature of transient electronic states created by photoabsorption critically determines the dynamics of the subsequently evolving system. Here, we investigate K-shell photoionized atomic neon by absorbing a second photon within the Auger-decay lifetime of 2.4 fs using the European XFEL, a unique high-repetition-rate, wavelength-tunable x-ray free-electron laser. By high-resolution electron spectroscopy, we map out the transient Rydberg resonances unraveling the details of the subsequent decay of the hollow atom. So far, ultra-short-lived electronic transients, which are often inaccessible by experiments, were mainly inferred from theory but are now addressed by nonlinear x-ray absorption. The successful characterization of these resonances with femtosecond lifetimes provides the basis for a novel class of site-specific, nonlinear, and time-resolved studies with strong impact for a wide range of topics in physics and chemistry.
  •  
4.
  • Travnikova, O., et al. (author)
  • Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: the True Reactive State
  • 2022
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:48, s. 21878-21886
  • Journal article (peer-reviewed)abstract
    • The photochemically induced ring-opening isomeriza-tion reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.
  •  
5.
  • Eichmann, U., et al. (author)
  • Photon-recoil imaging : Expanding the view of nonlinear x-ray physics
  • 2020
  • In: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 369:6511, s. 1630-1633
  • Journal article (peer-reviewed)abstract
    • Addressing the ultrafast coherent evolution of electronic wave functions has long been a goal of nonlinear x-ray physics. A first step toward this goal is the investigation of stimulated x-ray Raman scattering (SXRS) using intense pulses from an x-ray free-electron laser. Earlier SXRS experiments relied on signal amplification during pulse propagation through dense resonant media. By contrast, our method reveals the fundamental process in which photons from the primary radiation source directly interact with a single atom. We introduce an experimental protocol in which scattered neutral atoms rather than scattered photons are detected. We present SXRS measurements at the neon K edge and a quantitative theoretical analysis. The method should become a powerful tool in the exploration of nonlinear x-ray physics.
  •  
6.
  • Feinberg, Alexandra J., et al. (author)
  • X-ray diffractive imaging of highly ionized helium nanodroplets
  • 2022
  • In: Physical Review Research. - 2643-1564. ; 4:2
  • Journal article (peer-reviewed)abstract
    • Finding the lowest energy configuration of N unit charges on a sphere, known as Thomson's problem, is a long-standing query which has only been studied via numerical simulations. We present its physical realization using multiply charged He nanodroplets. The charge positions are determined by x-ray coherent diffractive imaging with Xe as a contrast agent. In neutral droplets, filaments resulting from Xe atoms condensing on quantum vortices are observed. Unique to charged droplets, however, Xe clusters that condense on charges are distributed on the surface in lattice-like structures, introducing He droplets as experimental model systems for the study of Thomson's problem.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view