SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ebrahim S) srt2:(2020-2023)"

Sökning: WFRF:(Ebrahim S) > (2020-2023)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Khatri, C, et al. (författare)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
4.
  •  
5.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  •  
7.
  •  
8.
  • Karimi Avargani, Habib, et al. (författare)
  • Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling
  • 2023
  • Ingår i: Agricultural Water Management. - 0378-3774. ; 288
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying operational losses in irrigation canals can be difficult due to inaccurate simplification in designing and operating national guidelines. However, this study aims to provide a practical solution to this problem by identifying operational losses, which are the primary cause of off-farm irrigation water losses. The method involves simulating the daily delivered water to individual Irrigation Units (IUs) through off-take structures using hydraulic simulation. The daily agricultural water demand for individual IUs is then calculated using a crop growth model and irrigation system efficiency. This approach offers an effective way to accurately identify operational losses in agricultural water distribution systems. The Roodasht irrigation district in central Iran was used test proposed method. The water distribution simulation was conducted using an open-source Irrigation Conveyance System Simulation (ICSS) in three separate scenarios, including 29, 22, and 55 days, and each showed a typical operation based on history. The IUs’ agricultural water demand, at each off-take location, was calculated by the Aquacrop estimation including the existing information of the on-farm water efficiency depending on irrigation system. According to the study, the amount of water lost daily varied between 60% and 82%, 50–70%, and 44–61% in IUs that used drip, sprinkler, and surface water application systems, respectively, during normal operational scenarios. In situations where water was scarce, the water loss range was 4–87%, 68–80%, and 60–70%, respectively.The results of this study confirmed that losses in the conveyance and distribution systems varied according to the distance from the source and were often higher than the recommended guidelines for irrigation system design and operation (such as the 10–20% suggested in Iranian guidelines). The proposed methodology can be used to improve estimation of actual water losses for irrigation districts with similar operation systems and climatic conditions.
  •  
9.
  • Fang, Li Tai, et al. (författare)
  • Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing
  • 2021
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 39:9, s. 1151-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-normal paired DNA samples from a breast cancer cell line and a matched lymphoblastoid cell line enable calibration of clinical sequencing pipelines and benchmarking 'tumor-only' or 'matched tumor-normal' analyses. The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.
  •  
10.
  • Malkani, Sherina, et al. (författare)
  • Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development
  • 2020
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 33:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs.
  •  
11.
  • Masood, Asad, et al. (författare)
  • Atmospheric Pressure Plasma Polymerisation of D-Limonene and Its Antimicrobial Activity
  • 2023
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibacterial coating is necessary to prevent biofilm-forming bacteria from colonising medical tools causing infection and sepsis in patients. The recent coating strategies such as immobilisation of antimicrobial materials and low-pressure plasma polymerisation may require multiple processing steps involving a high-vacuum system and time-consuming process. Some of those have limited efficacy and durability. Here, we report a rapid and one-step atmospheric pressure plasma polymerisation (APPP) of D-limonene to produce nano-thin films with hydrophobic-like properties for antibacterial applications. The influence of plasma polymerisation time on the thickness, surface characteristic, and chemical composition of the plasma-polymerised films was systematically investigated. Results showed that the nano-thin films deposited at 1 min on glass substrate are optically transparent and homogenous, with a thickness of 44.3 ± 4.8 nm, a smooth surface with an average roughness of 0.23 ± 0.02 nm. For its antimicrobial activity, the biofilm assay evaluation revealed a significant 94% decrease in the number of Escherichia coli (E. coli) compared to the control sample. More importantly, the resultant nano-thin films exhibited a potent bactericidal effect that can distort and rupture the membrane of the treated bacteria. These findings provide important insights into the development of bacteria-resistant and biocompatible coatings on the arbitrary substrate in a straightforward and cost-effective route at atmospheric pressure.
  •  
12.
  • Masood, Asad, et al. (författare)
  • Pulsed plasma polymerisation of Carvone: chemical characterization and enhanced antibacterial properties
  • 2022
  • Ingår i: Surface Innovations. - : ICE Publishing. - 2050-6252 .- 2050-6260. ; 11:6-7, s. 339-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of suitable coating with excellent antibacterial performance has now become a viable technique for enhancing the functional qualities of various biomedical materials. Here, pulsed plasma polymerisation was used to produce an antibacterial coating from carvone oil of spearmint plant. The coating films have adjustable chemical and physical properties based on the deposition parameter, i.e., duty cycles (DC). The static water contact angle (WCA) values of PW ppCar increase with the increase of DC. FTIR and XPS showed that the molecular structure of the carvone is less fragmented, retaining moieties associated with C-O and C=O when the DC is reduced. These C-O and C=O moieties likely reduced the measured static water contact angle. This surface chemical composition with predominantly C-O and C=O also showed a stronger bactericidal effect, based on the biofilm assay with bacteria (E. coli and S. aureus), compared to those coating with C-C and C-H produced at higher DC. According to the AFM images, the lower DC resulted in smoother and more homogeneous coating than those produced with the higher DC, while FE-SEM images show that when E. coli and S. aureus membranes were attached to the PW ppCar, they ruptured and distorted with a pore created, and that these distortions and ruptures increased as the DC was reduced.
  •  
13.
  • Tavassoli-Hojati, Z., et al. (författare)
  • A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids
  • 2020
  • Ingår i: Energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0360-5442 .- 1873-6785. ; 199
  • Tidskriftsartikel (refereegranskat)abstract
    • Electric power systems are moving toward smarter and more sustainable systems. These trends result in several positive advantages such as active participation of customers in electricity markets. However, resulting demand side flexibilities cause high demand fluctuations and increase the difficulty to maintain the power balance and reliability of smart grids. To address this challenge, this paper proposes a self-partitioning local neuro fuzzy model, which is capable of performing a fast and accurate short-term load forecasting. The proposed model, not only maintains the linearity as well as learning-from-data property via their fuzzy inference systems of local linear neuro fuzzy, but also benefits from partitioning the input space into linear and nonlinear vectors and assigning them separately into different local models. The proposed model is trained with the hierarchical binary-tree learning algorithm and rule premises are calculated through sigmoid partitioning functions. These appealing properties make the model appropriate for a fast and accurate analysis of the load time series featuring both linear and nonlinear characteristics. The effectiveness of the proposed model is compared with recently published forecasting models in terms of statistical performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy