SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grant CC) srt2:(2020-2023)"

Search: WFRF:(Grant CC) > (2020-2023)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Jolliffe, DA, et al. (author)
  • Vitamin D supplementation to prevent acute respiratory infections: systematic review and meta-analysis of aggregate data from randomised controlled trials
  • 2020
  • In: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory.
  • Journal article (other academic/artistic)abstract
    • BackgroundA 2017 meta-analysis of data from 25 randomised controlled trials of vitamin D supplementation for the prevention of acute respiratory infections revealed a protective effect of the intervention. Since then, 20 new RCTs have been completed.MethodsSystematic review and meta-analysis of data from randomised controlled trials (RCTs) of vitamin D for ARI prevention using a random effects model. Pre-specified sub-group analyses were done to determine whether effects of vitamin D on risk of ARI varied according to baseline 25-hydroxyvitamin D (25[OH]D) concentration or dosing regimen. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science and the ClinicalTrials.gov registry from inception to 1st May 2020. Double-blind RCTs of supplementation with vitamin D or calcidiol, of any duration, were eligible if they were approved by a Research Ethics Committee and if ARI incidence was collected prospectively and pre-specified as an efficacy outcome. Aggregate data, stratified by baseline 25(OH)D concentration, were obtained from study authors. The study was registered with PROSPERO (no. CRD42020190633).FindingsWe identified 45 eligible RCTs (total 73,384 participants). Data were obtained for 46,331 (98.0%) of 47,262 participants in 42 studies, aged 0 to 95 years. For the primary comparison of vitamin D supplementation vs. placebo, the intervention reduced risk of ARI overall (Odds Ratio [OR] 0.91, 95% CI 0.84 to 0.99; P for heterogeneity 0.01). No statistically significant effect of vitamin D was seen for any of the sub-groups defined by baseline 25(OH)D concentration. However, protective effects were seen for trials in which vitamin D was given using a daily dosing regimen (OR 0.75, 95% CI 0.61 to 0.93); at daily dose equivalents of 400-1000 IU (OR 0.70, 95% CI 0.55 to 0.89); and for a duration of ≤12 months (OR 0.82, 95% CI 0.72 to 0.93). No significant interaction was seen between allocation to vitamin D vs. placebo and dose frequency, dose size, or study duration. Vitamin D did not influence the proportion of participants experiencing at least one serious adverse event (OR 0.97, 95% CI 0.86 to 1.09). Risk of bias within individual studies was assessed as being low for all but three trials. A funnel plot showed left-sided asymmetry (P=0.008, Egger’s test).InterpretationVitamin D supplementation was safe and reduced risk of ARI, despite evidence of significant heterogeneity across trials. Protection was associated with administration of daily doses of 400-1000 IU vitamin D for up to 12 months. The relevance of these findings to COVID-19 is not known and requires investigation.FundingNone
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view