SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Harman P) srt2:(2022)"

Search: WFRF:(Harman P) > (2022)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Delios, A., et al. (author)
  • Examining the generalizability of research findings from archival data
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:30
  • Journal article (peer-reviewed)abstract
    • This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability-for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples. 
  •  
2.
  • El-Semman, Ibrahim, 1977, et al. (author)
  • Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • When conditions change, unicellular organisms rewire their metabolism to sustain cell maintenance and cellular growth. Such rewiring may be understood as resource re-allocation under cellular constraints. Eukaryal cells contain metabolically active organelles such as mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular constraints remain to be determined for such cells. Here, we present a comprehensive metabolic model of the yeast cell, based on its full metabolic reaction network extended with protein synthesis and degradation reactions. The model predicts metabolic fluxes and corresponding protein expression by constraining compartment-specific protein pools and maximising growth rate. Comparing model predictions with quantitative experimental data suggests that under glucose limitation, a mitochondrial constraint limits growth at the onset of ethanol formation-known as the Crabtree effect. Under sugar excess, however, a constraint on total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimisation, providing a framework to understand metabolic adaptation in eukaryal cells.
  •  
3.
  • Turrini, A. A., et al. (author)
  • Tunable critical correlations in kagome ice
  • 2022
  • In: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 105:9
  • Journal article (peer-reviewed)abstract
    • We present a comprehensive experimental and theoretical study of the kagome ice Coulomb phase that explores the fine-tuning of critical correlations by applied field, temperature, and crystal orientation. The continuous modification of algebraic correlations is observed by polarized neutron scattering experiments and is found to be well described by numerical simulations of an idealized model. We further clarify the thermodynamics of field-tuned Kasteleyn transitions and demonstrate some dramatic finite-size-scaling properties that depend on how topological string defects wind around the system boundaries. We conclude that kagome ice is a remarkable example of a critical and topological state in a real system that may be subject to fine experimental control.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view