SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Izadi Z.) srt2:(2015-2019)"

Search: WFRF:(Izadi Z.) > (2015-2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ferreira, Duarte M. S., et al. (author)
  • LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force
  • 2019
  • In: Skeletal Muscle. - : BioMed Central. - 2044-5040. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Background: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia.Methods: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1-calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling.Results: Here, we identify LIM and cysteine-rich domains 1 (LMCD1) as a positive regulator of muscle mass, that increases muscle protein synthesis and fiber size. LMCD1 expression in vivo was sufficient to increase specific force with lower requirement for calcium handling and to reduce muscle fatigue. Conversely, silencing LMCD1 expression impairs calcium handling and force, and induces muscle fatigue without overt atrophy. The actions of LMCD1 were dependent on calcineurin, as its inhibition using cyclosporine A reverted the observed hypertrophic phenotype. Finally, we determined that LMCD1 represses the expression of myoregulin, a known negative regulator of muscle performance. Interestingly, we observed that skeletal muscle LMCD1 expression is reduced in patients with skeletal muscle disease.Conclusions: Our gain- and loss-of-function studies show that LMCD1 controls protein synthesis, muscle fiber size, specific force, Ca2+ handling, and fatigue resistance. This work uncovers a novel role for LMCD1 in the regulation of skeletal muscle mass and function with potential therapeutic implications.
  •  
3.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
4.
  • Pettersson-Klein, A. T., et al. (author)
  • Small molecule PGC-1 alpha 1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration
  • 2018
  • In: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 9, s. 28-42
  • Journal article (peer-reviewed)abstract
    • Objective: The peroxisome proliferator-activated receptor-gamma coactivator-1 alpha 1 (PGC-1 alpha 1) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1 alpha 1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1 alpha 1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1 alpha 1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1 alpha 1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions.Methods: We designed a cell-based high-throughput screening system to identify PGC-1 alpha 1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1 alpha 1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes.Results: Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1 alpha 1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes.Conclusions: We identify compounds that induce PGC-1 alpha 1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (4)
Type of content
peer-reviewed (4)
Author/Editor
Larsson, Anders (1)
Ärnlöv, Johan, 1970- (1)
Hankey, Graeme J. (1)
Wijeratne, Tissa (1)
Sahebkar, Amirhossei ... (1)
Berggren, PO (1)
show more...
Hassankhani, Hadi (1)
Liu, Yang (1)
Bassat, Quique (1)
Mitchell, Philip B (1)
McKee, Martin (1)
Madotto, Fabiana (1)
Koyanagi, Ai (1)
Castro, Franz (1)
Aboyans, Victor (1)
Koul, Parvaiz A. (1)
Edvardsson, David (1)
Brodin, P (1)
Cooper, Cyrus (1)
Weiderpass, Elisabet ... (1)
Dhimal, Meghnath (1)
Vaduganathan, Muthia ... (1)
Sheikh, Aziz (1)
Adhikari, Tara Balla ... (1)
Acharya, Pawan (1)
Gething, Peter W. (1)
Hay, Simon I. (1)
Tripathy, Srikanth P ... (1)
Ruas, JL (1)
Schutte, Aletta E. (1)
Afshin, Ashkan (1)
Cornaby, Leslie (1)
Mullany, Erin C. (1)
Abbafati, Cristiana (1)
Abebe, Zegeye (1)
Afarideh, Mohsen (1)
Agrawal, Sutapa (1)
Alahdab, Fares (1)
Badali, Hamid (1)
Badawi, Alaa (1)
Bensenor, Isabela M. (1)
Bernabe, Eduardo (1)
Dandona, Lalit (1)
Dandona, Rakhi (1)
Dang, Anh Kim (1)
Degefa, Meaza Girma (1)
Esteghamati, Alireza (1)
Esteghamati, Sadaf (1)
Fanzo, Jessica (1)
Farvid, Maryam S. (1)
show less...
University
Karolinska Institutet (3)
Umeå University (1)
Uppsala University (1)
Stockholm University (1)
Örebro University (1)
Lund University (1)
show more...
Södertörn University (1)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (4)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view