SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Zhengjie) srt2:(2020-2024)"

Search: WFRF:(Liu Zhengjie) > (2020-2024)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yang, Guanqing, et al. (author)
  • A Multi-responsive Fluorescent Probe Reveals Mitochondrial Nucleoprotein Dynamics with Reactive Oxygen Species Regulation through Super-resolution Imaging
  • 2020
  • In: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 59:37, s. 16154-16160
  • Journal article (peer-reviewed)abstract
    • Understanding the biomolecular interactions in a specific organelle has been a long-standing challenge because it requires super-resolution imaging to resolve the spatial locations and dynamic interactions of multiple biomacromolecules. Two key difficulties are the scarcity of suitable probes for super-resolution nanoscopy and the complications that arise from the use of multiple probes. Herein, we report a quinolinium derivative probe that is selectively enriched in mitochondria and switches on in three different fluorescence modes in response to hydrogen peroxide (H2O2), proteins, and nucleic acids, enabling the visualization of mitochondrial nucleoprotein dynamics. STED nanoscopy reveals that the proteins localize at mitochondrial cristae and largely fuse with nucleic acids to form nucleoproteins, whereas increasing H(2)O(2)level leads to disassociation of nucleic acid-protein complexes.
  •  
2.
  • Gong, Zheng, et al. (author)
  • A targetable fluorescent probe for detecting mitochondrial viscosity in live cells by using fluorescence lifetime imaging
  • 2024
  • In: New Journal of Chemistry. - : ROYAL SOC CHEMISTRY. - 1144-0546 .- 1369-9261.
  • Journal article (peer-reviewed)abstract
    • Intracellular viscosity plays an important role in regulating cellular morphology and physiology and is closely related to a host of diseases. Especially, the changes in mitochondrial viscosity will cause some common diseases such as hyperlipidemia, Alzheimer's disease and cancer. In this work, we report the design of a red-emissive molecular rotor for the detection of mitochondrial viscosity in live cells. The probe showed fascinating performance, such as specific targeting to mitochondria, high sensitivity to viscosity, and rapid fluorescence response, especially the dual response mode of fluorescence intensity and fluorescence lifetime. By using this probe, we realized monitoring of the mitochondrial viscosity variations in live cells under different physiological processes. Our study offers an opportunity to discover potential tools for mitochondria-related physiology and pathology investigation. A D-pi-A typed fluorescence lifetime probe for sensitively detecting viscosity has been designed and synthesized. BSOH has been successfully applied to real-time monitoring mitochondrial viscosity in live cells by fluorescence lifetime imaging.
  •  
3.
  • Shen, Jie, et al. (author)
  • Real-time monitoring of lipid droplets growth via the fusion with fluorescent dye-labeled adiposomes
  • 2020
  • In: Dyes and pigments. - : ELSEVIER SCI LTD. - 0143-7208 .- 1873-3743. ; 182
  • Journal article (peer-reviewed)abstract
    • Investigating lipid droplets (LDs) behaviours is essential to deeply understand the physiology of LDs, such as their growths, movements, fusion/division, and autophagy. Among these behaviours, the growth of LDs is one of the most difficult to track due to the very subtle morphology evolution in a short time window. The major obstacle is that conventional LDs-specific dyes with low photostability cannot indicate the LDs size change. To address this issue, we synthesize a hydrophobic and photostable fluorescent dye (TPA-AD) and load it into the neutral lipid micelles (as artificial adiposomes). The highly hydrophobic TPA-AD enables the specific accumulation into intracellular LDs and the ready loading artificial adiposomes. When the intracellular LDs take TPA-AD-labeled adiposomes, by fusion, the sizes of LDs gradually grow, and LDs are simultaneously lighted up by the fluorescence of TPA-AD. Importantly, the high photostability of TPA-AD ensures the enhanced fluorescence signals. The finding here will further strengthen the understanding of LDs dynamics and fat metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view