SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Migliavacca M) srt2:(2010-2014)"

Search: WFRF:(Migliavacca M) > (2010-2014)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Forkel, M., et al. (author)
  • Identifying environmental controls on vegetation greenness phenology through model-data integration
  • 2014
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11:23, s. 7025-7050
  • Journal article (peer-reviewed)abstract
    • Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-decadal dynamics of vegetation greenness.
  •  
2.
  • Niu, Shuli, et al. (author)
  • Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
  • 2012
  • In: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 194:3, s. 775-783
  • Journal article (peer-reviewed)abstract
    • • It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
  •  
3.
  •  
4.
  • Yi, Chuixiang, et al. (author)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
5.
  • Migliavacca, Mirco, et al. (author)
  • Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites
  • 2011
  • In: Global Change Biology. - : Wiley. - 1354-1013. ; 17:1, s. 390-409
  • Journal article (peer-reviewed)abstract
    • In this study we examined ecosystem respiration (R-ECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of R-ECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of R-ECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of R-ECO. The maximum seasonal leaf area index (LAI(MAX)) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature T-ref=15 degrees C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P < 0.001, n=104) even within each PFT. Besides LAI(MAX), we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (N-depo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAI(MAX)) which performed well in predicting the spatio-temporal variability of R-ECO, explaining > 70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view