SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Newcomer F M) srt2:(2000-2004)"

Search: WFRF:(Newcomer F M) > (2000-2004)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrés, E., et al. (author)
  • Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice
  • 2001
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 410:6827, s. 441-443
  • Journal article (peer-reviewed)abstract
    • Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.
  •  
2.
  • Andrés, E., et al. (author)
  • Recent results from AMANDA
  • 2001
  • In: International Journal of Modern Physics A. - 0217-751X .- 1793-656X. ; 16:1C, s. 1013-1015
  • Journal article (peer-reviewed)abstract
    • We present results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope.
  •  
3.
  • Andres, E., et al. (author)
  • Selected recent results from AMANDA
  • 2001
  • In: ICHEP 2000. Proceedings of the 30th International Conference on High Energy Physics. - : World Scientific. ; , s. 965-968
  • Conference paper (peer-reviewed)abstract
    • We present a selection of results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope. Studies of nearly vertical upgoing muons limit the available parameter space for WIMP dark matter under the assumption that WIMPS are trapped in the earth's gravitational potential well and annihilate with one another near the earth's center.
  •  
4.
  • Andres, E., et al. (author)
  • Results from the AMANDA high energy neutrino detector
  • 2000
  • In: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 91:1-3, s. 423-430
  • Journal article (peer-reviewed)abstract
    • This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For Eμ > 10 TeV, the detector exceeds 10,000 m2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the detector. The absolute pointing accuracy and angular resolution has been confirmed by the analysis of coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favorably to existing limits for sources in the Southern sky. We also present the current status of the searches for high energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the earth.
  •  
5.
  • Karle, A., et al. (author)
  • Observation of high energy atmospheric neutrinos with AMANDA
  • 2000
  • In: AIP Conference Proceedings. - : American Institute of Physics (AIP). ; , s. 823-827
  • Conference paper (peer-reviewed)abstract
    • In 1997 the Antarctic Muon and Neutrino Detector Array (AMANDA) started operating with 10 strings. In an analysis of data taken during the first year of operation 188 atmospheric neutrino candidates were found. Their zenith angle distribution agrees with expectations based on Monte Carlo simulations. A preliminary upper limit is given on a diffuse flux of high energy neutrinos of astrophysical origin.
  •  
6.
  •  
7.
  • Wischnewski, R., et al. (author)
  • The AMANDA neutrino detector : Status report
  • 2000
  • In: Nuclear physics B, Proceedings supplements. - 0920-5632 .- 1873-3832. ; 85:1-3, s. 141-145
  • Journal article (peer-reviewed)abstract
    • The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with ∼650 PMTs will be completed in spring 2000.
  •  
8.
  • Åkesson, Torsten, et al. (author)
  • Status of design and construction of the Transition Radiation Tracker (TRT) for the ATLAS experiment at the LHC
  • 2004
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 522:1-2, s. 131-145
  • Journal article (peer-reviewed)abstract
    • The ATLAS Inner Detector consists of three sub-systems, the Pixel Detector at the innermost radius, the Semi-Conductor Tracker at intermediate radii, and the Transition Radiation Tracker (TRT) at the outermost radius in front of the electromagnetic calorimeter. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift-tubes (or straws) and of electron identification based on radiator fibres or foils interleaved between the straws themselves. This paper describes the current status of design and construction of the various components of the TRT: the assembly of the barrel modules has recently been completed, that of the end-cap wheels is well underway, and the on-detector front-end electronics is in production. The detector modules and front-end electronics boards will be integrated together over the next year, the barrel and end-cap TRT parts will be assembled and tested with their SCT counterparts during 2005 and installation and commissioning in the ATLAS pit will take place at the end of 2005 and the beginning of 2006. (C) 2004 Elsevier B.V. All rights reserved.
  •  
9.
  • Åkesson, Torsten, et al. (author)
  • ATLAS Transition Radiation Tracker test-beam results
  • 2004
  • In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 522:1-2, s. 50-55
  • Conference paper (peer-reviewed)abstract
    • Several prototypes of the Transition Radiation Tracker for the ATLAS experiment at the LHC have been built and tested at the CERN SPS accelerator. Results from detailed studies of the straw-tube hit registration efficiency and drift-time measurements and of the pion and electron spectra without and with radiators are presented.
  •  
10.
  • Åkesson, Torsten, et al. (author)
  • An X-ray scanner for wire chambers
  • 2003
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - 0167-5087. ; 507:3, s. 622-635
  • Journal article (peer-reviewed)abstract
    • The techniques to measure the position of sense wires and field wires, the gas gain and the gas flow rate inside wire chambers using a collimated and filtered X-ray beam are reported. Specific examples are given using barrel modules of the Transition Radiation Tracker of the ATLAS experiment. (C) 2003 Elsevier B.V. All rights reserved.
  •  
11.
  • Åkesson, Torsten, et al. (author)
  • Aging studies for the ATLAS Transition Radiation Tracker (TRT)
  • 2003
  • In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 515:1-2, s. 166-179
  • Conference paper (peer-reviewed)abstract
    • A summary of the aging and material validation studies carried out for the ATLAS Transition Radiation Tracker (TRT) is presented. Particular emphasis is put on the different phenomena observed in straw tubes operating with the chosen Xe/CF4/CO2 mixture. The most serious effects observed are silicon deposition on the anode wire and damage of the anode wire gold plating. Etching phenomena and active radical effects are also discussed. With a careful choice of all materials and components, and with good control of the water contamination in the active gas, the ATLAS TRT will operate reliably for 10 years at the LHC design luminosity. To demonstrate this fully, more work is still needed on the gas system purification elements, in particular to understand their interplay with the active species containing fluorine created in the avalanche process under irradiation.
  •  
12.
  • Åkesson, Torsten, et al. (author)
  • Tracking performance of the transition radiation tracker prototype for the ATLAS experiment
  • 2002
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - 0167-5087. ; 485:3, s. 298-310
  • Journal article (peer-reviewed)abstract
    • A prototype of the Transition Radiation Tracker (TRT) for the ATLAS experiment at the CERN LHC has been built and tested at the CERN SPS. Detailed studies of the drift-time measurements, alignment technique, hit registration efficiency, track and momentum accuracy were performed. A coordinate measurement accuracy of 150 Pin for a single TRT drift tube and momentum resolution of 0.8% for 20 GeV pions in a 1.56 T magnetic field were achieved. The results obtained are in agreement with the expected tracking performance of the ATLAS TRT. (C) 2001 Published by Elsevier Science B.V.
  •  
13.
  • Åkesson, Torsten, et al. (author)
  • Implementation of the DTMROC-S ASIC for the ATLAS TRT Detector in a 0.25μm CMOS technology
  • 2003
  • In: IEEE Nuclear Science Symposium and Medical Imaging Conference. - 1082-3654. - 0780376366 ; 1, s. 549-553
  • Conference paper (peer-reviewed)abstract
    • The DTMROC-S is a 16-channeI front-end chip developed for the signal processing of the ATLAS straw tube detector, TRT. Due to a highly radioactive environment, the chip is fabricated in a commercial 0.25μm CMOS technology hardened by layout techniques and, in addition, a special methodology was used to improve the circuit's robustness against Single Events Effects (SEE) caused by ionizing particles. Exhaustive internal test features were foreseen to simplify and ensure comprehensive design verification, high fault coverage and throughput. Compared to the previous version of the chip done in a 0.8μm radiation-hard CMOS and despite of all supplementary features, the Deep-Sub-Micron (DSM) technology results in a much smaller chip size that increases the production yield and lowers the power consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view