SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nielsen Elisabet I) srt2:(2005-2009)"

Search: WFRF:(Nielsen Elisabet I) > (2005-2009)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nielsen, Elisabet I., et al. (author)
  • Developmental Pharmacokinetics of Gentamicin in Preterm and Term Neonates : Population Modelling of a Prospective Study
  • 2009
  • In: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 48:4, s. 253-263
  • Journal article (peer-reviewed)abstract
    • Background and objective:Preterm and term newborn infants show wide interindividual variability (IIV) in pharmacokinetic parameters of gentamicin. More extensive knowledge and use of predictive covariates could lead to faster attainment of therapeutic concentrations and a reduced need for concentration monitoring. This study was performed to characterize the population pharmacokinetics of gentamicin in preterm and term neonates and to identify and quantify relationships between patient characteristics and IIV. A secondary aim was to evaluate cystatin C as a marker for gentamicin clearance in this patient population.Methods:Data were collected in a prospective study performed in the Neonatal Intensive Care Unit at the University Children's Hospital, Uppsala, Sweden. Population pharmacokinetic modelling was performed using nonlinear mixed-effects modelling (NONMEM) software. Bodyweight was included as the primary covariate according to an allometric power model. Other evaluated covariates were age (postmenstrual age, gestational age [GA], postnatal age [PNA]), markers for renal function (serum creatinine, serum cystatin Q and concomitant medication with cefuroxime, vancomycin or indometacin. Covariate-parameter relationships were explored using a stepwise covariate model building procedure. The predictive performance of the developed model was evaluated using an independent external dataset for a similar patient population.Results:Sixty-one newborn infants (GA range 23.3-42.1 weeks, PNA range 0-45 days) were enrolled in the study. In total, 894 serum gentamicin samples were included in the analysis. The concentration-time profile was described using a three-compartment model. Gentamicin clearance increased with the GA and PNA (included in a nonlinear fashion). The GA was also identified as having a significant influence on the central volume of distribution, with a preterm neonate having a larger central volume of distribution per kilogram of bodyweight than a term neonate. Cystatin C and creatinine were not correlated with gentamicin clearance in this study population. The external dataset was well predicted by the developed model.Conclusion:Bodyweight and age (GA and PNA) were found to be major factors contributing to IIV in gentamicin clearance in neonates. Based on these data, cystatin C and serum creatinine were not correlated with gentamicin clearance and therefore not likely to be predictive markers of renal function in this patient population. Based on predictions from the developed model, preterm neonates do not reach targeted peak and trough gentamicin concentrations after a standard dosage regimen of 4mg/kg given once daily, suggesting a need for higher loading doses and prolonged dosing intervals in this patient population.
  •  
2.
  • Nielsen, Elisabet I., et al. (author)
  • Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments
  • 2007
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 51:1, s. 128-136
  • Journal article (peer-reviewed)abstract
    • Dosing of antibacterial agents is generally based on point estimates of the effect, even though bacteria exposed to antibiotics show complex kinetic behaviors. The use of the whole time course of the observed effects would be more advantageous. The aim of the present study was to develop a semimechanistic pharmacokinetic (PK)/pharmacodynamic (PD) model characterizing the events seen in a bacterial system when it is exposed to antibacterial agents with different mechanisms of action. Time-kill curve experiments were performed with a strain of Streptococcus pyogenes exposed to a wide range of concentrations of the following antibiotics: benzylpenicillin, cefuroxime, erythromycin, moxifloxacin, and vancomycin. Bacterial counts were monitored with frequent sampling during the experiment. A simultaneous fit of all data was accomplished. The degradation of the drugs was monitored and corrected for in the model, and a link model was used to account for an effect delay. In the final PK/PD model, the total bacterial population was divided into two subpopulations: one growing drug-susceptible population and one resting insusceptible population. The drug effect was included as an increase of the killing rate of bacteria in the susceptible state, according to a maximum-effect (Emax) model. An internal model validation showed that the model was robust and had good predictability. In conclusion, for all drugs, the final PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to different antibiotic concentrations. The semimechanistic model that was developed might, after further refinement, serve as a tool for the development of optimal dosing strategies for antibacterial agents.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view