SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Novak Tomas) srt2:(2020-2024)"

Search: WFRF:(Novak Tomas) > (2020-2024)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Vogels, Thomas, et al. (author)
  • Propagation of Tau Pathology : Integrating Insights From Postmortem and In Vivo Studies
  • 2020
  • In: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 87:9, s. 808-818
  • Research review (peer-reviewed)abstract
    • Cellular accumulation of aggregated forms of the protein tau is a defining feature of so-called tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and chronic traumatic encephalopathy. A growing body of literature suggests that conformational characteristics of tau filaments, along with regional vulnerability to tau pathology, account for the distinct histopathological morphologies, biochemical composition, and affected cell types seen across these disorders. In this review, we describe and discuss recent evidence from human postmortem and clinical biomarker studies addressing the differential vulnerability of brain areas to tau pathology, its cell-to-cell transmission, and characteristics of the different strains that tau aggregates can adopt. Cellular biosensor assays are increasingly used in human tissue to detect the earliest forms of tau pathology, before overt histopathological lesions (i.e., neurofibrillary tangles) are apparent. Animal models with localized tau expression are used to uncover the mechanisms that influence spreading of tau aggregates. Further, studies of human postmortem-derived tau filaments from different tauopathies injected in rodents have led to striking findings that recapitulate neuropathology-based staging of tau. Furthermore, the recent advent of tau positron emission tomography and novel fluid-based biomarkers render it possible to study the temporal progression of tau pathology in vivo. Ultimately, evidence from these approaches must be integrated to better understand the onset and progression of tau pathology across tauopathies. This will lead to improved methods for the detection and monitoring of disease progression and, hopefully, to the development and refinement of tau-based therapeutics.
  •  
2.
  • Amare, Azmeraw, et al. (author)
  • Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder.
  • 2023
  • In: Research square. - : Research Square Platform LLC.
  • Journal article (peer-reviewed)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
  •  
3.
  • Amare, Azmeraw T, et al. (author)
  • Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder.
  • 2023
  • In: Molecular psychiatry. - 1476-5578. ; 28, s. 5251-5261
  • Journal article (peer-reviewed)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental healthdisorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P=9.8×10-12, R2=1.9%) and continuous (P=6.4×10-9, R2=2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P=3.9×10-4, R2=0.9%), but not for the continuous outcome (P=0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
  •  
4.
  •  
5.
  • Coombes, Brandon J, et al. (author)
  • Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study.
  • 2021
  • In: Complex psychiatry. - : S. Karger AG. - 2673-3005 .- 2673-298X. ; 7:3-4, s. 80-89
  • Journal article (peer-reviewed)abstract
    • Response to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients (N = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. PRSs for attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and schizophrenia (SCZ) were computed using lassosum and in a model including all three PRSs and other covariates, and the PRS of ADHD (β = -0.14; 95% confidence interval [CI]: -0.24 to -0.03; p value = 0.010) and MDD (β = -0.16; 95% CI: -0.27 to -0.04; p value = 0.005) predicted worse quantitative lithium response. A higher SCZ PRS was associated with higher rates of medication nonadherence (OR = 1.61; 95% CI: 1.34-1.93; p value = 2e-7). This study indicates that genetic risk for ADHD and depression may influence lithium treatment response. Interestingly, a higher SCZ PRS was associated with poor adherence, which can negatively impact treatment response. Incorporating genetic risk of ADHD, depression, and SCZ in combination with clinical risk may lead to better clinical care for patients with BD.
  •  
6.
  • Giuliani, Federica, et al. (author)
  • NLITED - New Level of Integrated Techniques for Daylighting Education: preliminary data on the use of an e-learning platform
  • 2022
  • In: LUX Europa 2022 : Proceedings of the 14th European Lighting Conference - Proceedings of the 14th European Lighting Conference. - 9788011022693 - 9788011022693 ; , s. 138-146
  • Conference paper (peer-reviewed)abstract
    • Project NLITED – New Level of Integrated Techniques for Daylighting Education - is an educational project for students and professionals. The project's objective is to create and develop an online eLearning platform with 32 eModules dedicated to daylight knowledge. The project also offers e-learners two summer school training where the theoryis put into practice. The platform was launched on January 31, 2022. The paper analyses the participation during the first four months of online activity until May 31, 2022. It discusses which eModules have received the highest participation rate and which have the lowest. These data are compared to the preferences on modules expressed by different panels of experts. The experts expressed their recommendations for specific educational content during workshops conducted in 2021, which led to the definition of the curriculum. Furthermore, participants also fill out an evaluation test on the quality and the usability of the eModule(s) they have taken. This information leads to the amendments of the ePlatform which are in the scope of action for the final year of the NLTED project.
  •  
7.
  • Herrera-Rivero, Marisol, et al. (author)
  • Exploring the genetics of lithium response in bipolar disorders.
  • 2023
  • In: Research square.
  • Other publication (other academic/artistic)abstract
    • Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II.We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism.Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
  •  
8.
  • Herrera-Rivero, Marisol, et al. (author)
  • Exploring the genetics of lithium response in bipolar disorders
  • 2024
  • In: International Journal of Bipolar Disorders. - 2194-7511. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
  •  
9.
  • Herrera-Rivero, Marisol, et al. (author)
  • Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder.
  • 2023
  • In: Research square.
  • Other publication (other academic/artistic)abstract
    • The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3β. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.
  •  
10.
  •  
11.
  • Jasinski, Michal, et al. (author)
  • Operation and Planning of Energy Hubs Under Uncertainty - a Review of Mathematical Optimization Approaches
  • 2023
  • In: IEEE Access. - 2169-3536 .- 2169-3536. ; 11, s. 7208-7228
  • Journal article (peer-reviewed)abstract
    • Co-designing energy systems across multiple energy carriers is increasingly attracting attention of researchers and policy makers, since it is a prominent means of increasing the overall efficiency of the energy sector. Special attention is attributed to the so-called energy hubs, i.e., clusters of energy communities featuring electricity, gas, heat, hydrogen, and also water generation and consumption facilities. Managing an energy hub entails dealing with multiple sources of uncertainty, such as renewable generation, energy demands, wholesale market prices, etc. Such uncertainties call for sophisticated decision-making techniques, with mathematical optimization being the predominant family of decision-making methods proposed in the literature of recent years. In this paper, we summarize, review, and categorize research studies that have applied mathematical optimization approaches towards making operational and planning decisions for energy hubs. Relevant methods include robust optimization, information gap decision theory, stochastic programming, and chance-constrained optimization. The results of the review indicate the increasing adoption of robust and, more recently, hybrid methods to deal with the multi-dimensional uncertainties of energy hubs.
  •  
12.
  • Kelsoe, John, et al. (author)
  • Lithium Response in Bipolar Disorder is Associated with Focal Adhesion and PI3K-Akt Networks: A Multi-omics Replication Study.
  • 2023
  • In: Research square.
  • Other publication (other academic/artistic)abstract
    • Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
  •  
13.
  • Krizek, Filip, et al. (author)
  • Atomically sharp domain walls in an antiferromagnet
  • 2022
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:13
  • Journal article (peer-reviewed)abstract
    • The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field–insensitive neuromorphic functionalities.
  •  
14.
  • Ou, Anna H., et al. (author)
  • Lithium response in bipolar disorder is associated with focal adhesion and PI3K-Akt networks: a multi-omics replication study
  • 2024
  • In: TRANSLATIONAL PSYCHIATRY. - 2158-3188. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
  •  
15.
  • Reimers, Sonka, et al. (author)
  • Defect-driven antiferromagnetic domain walls in CuMnAs films
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.
  •  
16.
  • Reimers, Sonka, et al. (author)
  • Defect-driven antiferromagnetic domain walls in CuMnAs films
  • 2023
  • In: 2023 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2023 - Proceedings. - 9798350338362
  • Conference paper (peer-reviewed)abstract
    • Antiferromagnetic (AF) materials offer a route to realising high-speed, high-density data storage devices that are robust against magnetic fields due to their intrinsic dynamics in the THz-regime and the lack magnetic stray fields. The key to functionality and efficiency is the control of AF domains and domain walls. Although AF domain structures are known to be sensitive to magnetoelastic effects, the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning x-ray diffraction microscopy and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects, which determine the location and orientation of 180° and 90° domain walls. The results emphasise the high sensitivity of the AF domain structure to the crystallographic nanostructure and provide a route to optimisng device performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16
Type of publication
journal article (10)
other publication (3)
conference paper (2)
research review (1)
Type of content
peer-reviewed (13)
other academic/artistic (3)
Author/Editor
Novak, Tomas (11)
Landén, Mikael, 1966 (9)
Lavebratt, Catharina (9)
Monteleone, Palmiero (9)
Schalling, Martin (9)
Papiol, Sergi (9)
show more...
Heilbronner, Urs (9)
Degenhardt, Franzisk ... (9)
Hou, Liping (9)
Shekhtman, Tatyana (9)
Adli, Mazda (9)
Akula, Nirmala (9)
Akiyama, Kazufumi (9)
Ardau, Raffaella (9)
Arias, Bárbara (9)
Backlund, Lena (9)
Bellivier, Frank (9)
Bengesser, Susanne (9)
Cervantes, Pablo (9)
Chillotti, Caterina (9)
Cichon, Sven (9)
Cruceanu, Cristiana (9)
DePaulo, J Raymond (9)
Etain, Bruno (9)
Jamain, Stéphane (9)
Falkai, Peter (9)
Forstner, Andreas J (9)
Frisén, Louise (9)
Gard, Sébastien (9)
Grigoroiu-Serbanescu ... (9)
Grof, Paul (9)
Hashimoto, Ryota (9)
Hauser, Joanna (9)
Herms, Stefan (9)
Hoffmann, Per (9)
Jiménez, Esther (9)
Kahn, Jean-Pierre (9)
Kassem, Layla (9)
Kuo, Po-Hsiu (9)
Kato, Tadafumi (9)
Kittel-Schneider, Sa ... (9)
Kusumi, Ichiro (9)
Laje, Gonzalo (9)
Leboyer, Marion (9)
Manchia, Mirko (9)
Martinsson, Lina (9)
Colom, Francesc (9)
Mitjans, Marina (9)
Ozaki, Norio (9)
Pfennig, Andrea (9)
show less...
University
University of Gothenburg (10)
Karolinska Institutet (9)
Lund University (6)
Umeå University (1)
Uppsala University (1)
Stockholm University (1)
show more...
Linköping University (1)
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (16)
Research subject (UKÄ/SCB)
Medical and Health Sciences (11)
Natural sciences (4)
Engineering and Technology (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view