SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pekny Milos 1965) srt2:(2004)"

Search: WFRF:(Pekny Milos 1965) > (2004)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Larsson, Åsa, et al. (author)
  • Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(-/-)Vim(-/-) mice
  • 2004
  • In: Neurochem Res. - : Springer Science and Business Media LLC. - 0364-3190. ; 29:11, s. 2069-73
  • Journal article (peer-reviewed)abstract
    • In response to central nervous system (CNS) injury, and more discretely so also during aging, astrocytes become reactive and increase their expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Studies of mice deficient in astrocytic intermediate filaments have provided insights into the function of reactive gliosis. Recently we demonstrated robust integration of retinal transplants (1) and increased posttraumatic synaptic regeneration (2) in GFAP(-/-)Vim(-/-) mice, suggesting that modulation of astrocyte activity affects the permissiveness of the CNS environment for regeneration. Neurogenesis in the adult mammalian CNS is restricted to essentially two regions, the hippocampus and the subventricular zone. Here, we assessed neurogenesis in the hippocampus of 18-month-old GFAP(-/-)Vim(-/-) mice. In the granular layer of the dentate gyrus, cell proliferation/survival was 34% higher and neurogenesis 36% higher in GFAP(-/-)Vim(-/-) mice than in wildtype controls. These findings suggest that the adult hippocampal neurogenesis in healthy old mice can be increased by modulating astrocyte reactivity.
  •  
3.
  • Lundkvist, Andrea, 1975, et al. (author)
  • Under stress, the absence of intermediate filaments from Müller cells in the retina has structural and functional consequences.
  • 2004
  • In: Journal of cell science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 117:Pt 16, s. 3481-8
  • Journal article (peer-reviewed)abstract
    • In epithelial and muscle cells, intermediate filaments (IFs) are important for resistance to mechanical stress. The aim of this study was to elucidate whether IFs are also important for providing resistance to mechanical stress in the Müller cells of the retina and whether this has any pathophysiological consequences. We used mice deficient in IF proteins glial fibrillary acidic protein and/or vimentin (GFAP(-/-), Vim(-/-) and GFAP(-/-) Vim(-/-)), and stress on the retina was applied by excision of the eyes immediately post mortem (compared with in situ fixation) or by inducing a neovascular response to oxygen-induced retinopathy (OIR). The structure of unchallenged retinas was normal, but mechanical stress caused local separation of the inner limiting membrane (ILM) and adjacent tissue from the rest of the retina in GFAP(-/-) Vim(-/-) mice and, to a lesser extent, in Vim(-/-) mice. This detachment occurred within the endfeet of Müller cells, structures normally rich in IFs but IF-free in GFAP(-/-) Vim(-/-) mice. Hypoxia-induced neovascularization was comparable in all groups of mice with respect to the retinal surface area occupied by new vessels. However, the vessels traversed the ILM and penetrated the vitreous body less frequently than in wild-type retinas (31-55% in Vim(-/-), 66-79% in GFAP(-/-) Vim(-/-)). We conclude that IFs are important for maintaining the mechanical integrity of Müller-cell endfeet and the inner retinal layers under a mechanical challenge. Furthermore, the absence of IFs in Müller cells leads to an abnormal response of the vascular system to ischemia, specifically decreased ability of newly formed blood vessels to traverse the ILM.
  •  
4.
  • Pekny, Milos, 1965, et al. (author)
  • Astrocyte intermediate filaments in CNS pathologies and regeneration.
  • 2004
  • In: The Journal of pathology. - : Wiley. - 0022-3417. ; 204:4, s. 428-37
  • Research review (peer-reviewed)abstract
    • Astroglial cells are the most abundant cells in the mammalian central nervous system (CNS), yet our knowledge about their function in health and disease has been limited. This review focuses on the recent work addressing the function of intermediate filaments in astroglial cells under severe mechanical or osmotic stress, in hypoxia, and in brain and spinal cord injury. Recent data show that when astrocyte intermediate filaments are genetically ablated in mice, reactive gliosis is attenuated and the course of several CNS pathologies is altered, while the signs of CNS regeneration become more prominent. GFAP is the principal astrocyte intermediate filament protein and dominant mutations in the GFAP gene have been shown to lead to Alexander disease, a fatal neurodegenerative condition in humans.
  •  
5.
  •  
6.
  • Sandilands, Aileen, et al. (author)
  • Bfsp2 mutation found in mouse 129 strains causes the loss of CP49' and induces vimentin-dependent changes in the lens fibre cell cytoskeleton.
  • 2004
  • In: Experimental eye research. - : Elsevier BV. - 0014-4835. ; 78:4, s. 875-89
  • Journal article (peer-reviewed)abstract
    • Here we report the first natural mutation in the mouse Bfsp2 gene. Characterisation of mouse Bfsp2 in the 129X1/SvJ revealed a mutation that deleted the acceptor site of exon 2. This results in exon 1 being erroneously spliced to exon 3 causing a frameshift in the reading frame and the introduction of a stop codon at position 2 of exon 3 in the Bfsp2 transcript. RT-PCR studies of lens RNA isolated from 129S1/SvImJ, 129S2/SvPas and 129S4/SvJae strains confirmed the presence of this mutation in these diverse 129 strains and similar mutations were found in both CBA and 101 strains, but not in C3H or C57BL/6J mouse strains. This mutation is predicted to result in a severely truncated protein product called CP49, comprising essentially only exon 1, but polyclonal antibodies to CP49 failed to detect either full length or fragments of CP49 in extracts made from either 129S1/SvImJ or 129S4/SvJae suggesting that these 129 strains lack CP49 protein. Like the knockout of Bfsp2 reported recently, filensin protein levels and its proteolytic processing were altered also in the 129S1/SvImJ and 129S4/SvJae strains compared to C57BL/6J. Electron microscopy of the lens cytoskeleton from 129S2/SvPas revealed similar morphological changes in the cytoskeleton as compared to the CP49 knockout, with beaded and intermediate filaments being apparently replaced by poorly defined filament-like material. Vimentin was a key component of this residual material as shown by immunoelectron microscopy and by the generation of a CP49/vimentin double knockout mouse. This report of a natural mutation in Bfsp2 in the 129 and other mouse strains also has important implications for lens studies that have used the 129X1/SvJ strain in knockout strategies.
  •  
7.
  • Wilhelmsson, Ulrika, 1970, et al. (author)
  • Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration
  • 2004
  • In: J Neurosci. - 1529-2401. ; 24:21, s. 5016-21
  • Journal article (peer-reviewed)abstract
    • The regenerative capacity of the CNS is extremely limited. The reason for this is unclear, but glial cell involvement has been suspected, and oligodendrocytes have been implicated as inhibitors of neuroregeneration (Chen et al., 2000, GrandPre et al., 2000; Fournier et al., 2001). The role of astrocytes in this process was proposed but remains incompletely understood (Silver and Miller, 2004). Astrocyte activation (reactive gliosis) accompanies neurotrauma, stroke, neurodegenerative diseases, or tumors. Two prominent hallmarks of reactive gliosis are hypertrophy of astrocytic processes and upregulation of intermediate filaments. Using the entorhinal cortex lesion model in mice, we found that reactive astrocytes devoid of the intermediate filament proteins glial fibrillary acidic protein and vimentin (GFAP-/-Vim-/-), and consequently lacking intermediate filaments (Colucci-Guyon et al., 1994; Pekny et al., 1995; Eliasson et al., 1999), showed only a limited hypertrophy of cell processes. Instead, many processes were shorter and not straight, albeit the volume of neuropil reached by a single astrocyte was the same as in wild-type mice. This was accompanied by remarkable synaptic regeneration in the hippocampus. On a molecular level, GFAP-/-Vim-/- reactive astrocytes could not upregulate endothelin B receptors, suggesting that the upregulation is intermediate filament dependent. These findings show a novel role for intermediate filaments in astrocytes and implicate reactive astrocytes as potent inhibitors of neuroregeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view