SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ren Y) srt2:(2020-2024)"

Search: WFRF:(Ren Y) > (2020-2024)

  • Result 1-25 of 66
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Hyde, K. D., et al. (author)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • In: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Journal article (peer-reviewed)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
3.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  •  
5.
  • Buchanan, E. M., et al. (author)
  • The Psychological Science Accelerator's COVID-19 rapid-response dataset
  • 2023
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.
  •  
6.
  • Callaway, EM, et al. (author)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Journal article (peer-reviewed)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Chen, H., et al. (author)
  • Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals
  • 2020
  • In: Nature Materials. - : Nature Research. - 1476-1122 .- 1476-4660.
  • Journal article (peer-reviewed)abstract
    • Superelasticity associated with the martensitic transformation has found a broad range of engineering applications1,2. However, the intrinsic hysteresis3 and temperature sensitivity4 of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.2% strain in [001]-oriented NiCoFeGa single crystals, exhibiting non-hysteretic mechanical responses, a small temperature dependence and high-energy-storage capability and cyclic stability over a wide temperature and composition range. In situ synchrotron X-ray diffraction measurements show that the superelasticity is correlated with a stress-induced continuous variation of lattice parameter accompanied by structural fluctuation. Neutron diffraction and electron microscopy observations reveal an unprecedented microstructure consisting of atomic-level entanglement of ordered and disordered crystal structures, which can be manipulated to tune the superelasticity. The discovery of the large elasticity related to the entangled structure paves the way for exploiting elastic strain engineering and development of related functional materials. 
  •  
14.
  •  
15.
  •  
16.
  • Han, X. M., et al. (author)
  • The different mechanisms of peripheral and central TLR4 on chronic postsurgical pain in rats
  • 2021
  • In: Journal of Anatomy. - : Wiley. - 0021-8782 .- 1469-7580. ; 239:1, s. 111-124
  • Journal article (peer-reviewed)abstract
    • Chronic postsurgical pain (CPSP) is a common complication after surgery; however, the underlying mechanisms of CPSP are poorly understood. As one of the most important inflammatory pathways, the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kappa B) signaling pathway plays an important role in chronic pain. However, the precise role of the TLR4/NF-kappa B signaling pathway in CPSP remains unclear. In the present study, we established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR) and verified the effects and mechanisms of central and peripheral TLR4 and NF-kappa B on hyperalgesia in SMIR rats. The results showed that TLR4 expression was increased in both the spinal dorsal horn and dorsal root ganglia (DRGs) of SMIR rats. However, the TLR4 expression pattern in the spinal cord was different from that in DRGs. In the spinal cord, TLR4 was expressed in both neurons and microglia, whereas it was expressed in neurons but not in satellite glial cells in DRGs. Further results demonstrate that the central and peripheral TLR4/NF-kappa B signaling pathway is involved in the SMIR-induced CPSP by different mechanisms. In the peripheral nervous system, we revealed that the TLR4/NF-kappa B signaling pathway induced upregulation of voltage-gated sodium channel 1.7 (Nav1.7) in DRGs, triggering peripheral hyperalgesia in SMIR-induced CPSP. In the central nervous system, the TLR4/NF-kappa B signaling pathway participated in SMIR-induced CPSP by activating microglia in the spinal cord. Ultimately, our findings demonstrated that activation of the peripheral and central TLR4/NF-kappa B signaling pathway involved in the development of SMIR-induced CPSP.
  •  
17.
  • Ho, Janice Y., et al. (author)
  • Urban heat island effect-related mortality under extreme heat and non-extreme heat scenarios: A 2010–2019 case study in Hong Kong
  • 2023
  • In: Science of the Total Environment. - : Elsevier B.V.. - 0048-9697 .- 1879-1026. ; 858, Part 1
  • Journal article (peer-reviewed)abstract
    • The urban heat island (UHI) effect exacerbates the adverse impact of heat on human health. However, while the UHI effect is further intensified during extreme heat events, prior studies have rarely mapped the UHI effect during extreme heat events to assess its direct temperature impact on mortality. This study examined the UHI effect during extreme heat and non-extreme heat scenarios and compared their temperature-mortality associations in Hong Kong from 2010 to 2019. Four urban heat island degree hour (UHIdh) scenarios were mapped onto Hong Kong's tertiary planning units and classified into three levels (Low, Moderate, and High). We assessed the association between temperature and non-external mortality of populations living in each UHIdh level for the extreme heat/non-extreme heat scenarios during the 2010–2019 hot seasons. Our results showed substantial differences between the temperature-mortality associations in the three levels under the UHIdh extreme heat scenario (UHIdh_EH). While there was no evidence of increased mortality in Low UHIdh_EH areas, the mortality risk in Moderate and High UHIdh_EH areas were significantly increased during periods of hot temperature, with the High UHIdh_EH areas displaying almost double the risk (RR: 1.08, 95%CI: 1.03, 1.14 vs. RR: 1.05, 95 % CI: 1.01, 1.09). However, other non-extreme heat UHI scenarios did not demonstrate as prominent of a difference. When stratified by age, the heat effects were found in Moderate and High UHIdh_EH among the elderly aged 75 and above. Our study found a difference in the temperature-mortality associations based on UHI intensity and potential heat vulnerability of populations during extreme heat events. Preventive measures should be taken to mitigate heat especially in urban areas with high UHI intensity during extreme heat events, with particular attention and support for those prone to heat vulnerability, such as the elderly and poorer populations.
  •  
18.
  •  
19.
  • Huang, C. Y., et al. (author)
  • The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance
  • 2021
  • In: Cell Discovery. - : Springer Science and Business Media LLC. - 2056-5968. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Cardamine enshiensis is a well-known selenium (Se)-hyperaccumulating plant. Se is an essential trace element associated with many health benefits. Despite its critical importance, genomic information of this species is limited. Here, we report a chromosome-level genome assembly of C. enshiensis, which consists of 443.4 Mb in 16 chromosomes with a scaffold N50 of 24 Mb. To elucidate the mechanism of Se tolerance and hyperaccumulation in C. enshiensis, we generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes. The results reveal that flavonoid, glutathione, and lignin biosynthetic pathways may play important roles in protecting C. enshiensis from stress induced by Se. Hi-C analysis of chromatin interaction patterns showed that the chromatin of C. enshiensis is partitioned into A and B compartments, and strong interactions between the two telomeres of each chromosome were correlated with histone modifications, epigenetic markers, DNA methylation, and RNA abundance. Se supplementation could affect the 3D chromatin architecture of C. enshiensis at the compartment level. Genes with compartment changes after Se treatment were involved in selenocompound metabolism, and genes in regions with topologically associated domain insulation participated in cellular responses to Se, Se binding, and flavonoid biosynthesis. This multiomics research provides molecular insight into the mechanism underlying Se tolerance and hyperaccumulation in C. enshiensis.
  •  
20.
  •  
21.
  • Zhang, J. J., et al. (author)
  • Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain
  • 2021
  • In: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 156:3, s. 367-378
  • Journal article (peer-reviewed)abstract
    • Voltage-gated potassium channels (Kv) are important regulators of neuronal excitability for its role of regulating resting membrane potential and repolarization. Recent studies show that Kv channels participate in neuropathic pain, but the detailed underlying mechanisms are far from being clear. In this study, we used siRNA, miR-137 agomir, and antagomir to regulate the expression of Kv1.2 in spinal cord and dorsal root ganglia (DRG) of naive and chronic constriction injury (CCI) rats. Kv currents and neuron excitability in DRG neurons were examined by patch-clamp whole-cell recording to verify the change in Kv1.2 function. The results showed that Kv1.2 was down-regulated in DRG and spinal dorsal horn (SDH) by CCI. Knockdown of Kv1.2 by intrathecally injectingKcna2siRNA induced significant mechanical and thermal hypersensitivity in naive rats. Concomitant with the down-regulation of Kv1.2 was an increase in the expression of the miR-137. The targeting and regulating of miR-137 onKcna2was verified by dual-luciferase reporter system and intrathecal injecting miR-137 agomir. Furthermore, rescuing the expression of Kv1.2 in CCI rats, achieved through inhibiting miR-137, restored the abnormal Kv currents and excitability in DRG neurons, and alleviated mechanical allodynia and thermal hyperalgesia. These results indicate that the miR-137-mediated Kv1.2 impairment is a crucial etiopathogenesis for the nerve injury-induced neuropathic pain and can be a novel potential therapeutic target for neuropathic pain management.
  •  
22.
  • Zhang, L. Q., et al. (author)
  • MMS Observation on the Cross-Tail Current Sheet Roll-up at the Dipolarization Front
  • 2021
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:4
  • Journal article (peer-reviewed)abstract
    • We perform a case study on the evolution of the current sheet in different regions around the dipolarization front (DF), including magnetic-dip preceding the DF, front at the DF, and magnetic pileup region (MPR) behind the DF based on magnetospheric multiscale (MMS) observation on July 31, 2017. In this event, MMS1 stays inside the current sheet during the whole bursty bulk flow (BBF) interval. Our analysis reveals that the cross-tail current sheet at the DF is rolled up, signified by the depression (-V-z/-B-z) at the dip and elevation (+V-z/+B-z) at the front. The minimum variance analysis on the magnetic field method is applied to obtain the normal direction of the current sheet. The result confirms the roll-up, that is, downward at the depressed current sheet and upward at the elevated current sheet. The current sheet roll-up at the DF is asymmetric, with steeper elevation than depression. The elevation angle of the elevated current sheet is evaluated to be similar to 30 degrees. Strong duskward and predominantly perpendicular J spike (similar to 90 nA/m(2)) concentrate at the interface between the dip and the front. The strength of the current of the J-spike is about nine/three times the current at the dip/front. The front is characterized by positive E center dot J. In the dip/MPR, no such preference is seen. Ion/Electron pitch angle distributions exhibit significant and different evolutions in the roll-up current sheet from dip to front, including their energy-dependence and distributions. Finally, the roll-up current sheet could decelerate BBF and change the flow structure. The potential significance of the roll-up current sheet on BBF evolution is emphasized.
  •  
23.
  •  
24.
  • Gong, Y., et al. (author)
  • Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice
  • 2022
  • In: Metabolism: Clinical and Experimental. - : Elsevier BV. - 0026-0495. ; 134
  • Journal article (peer-reviewed)abstract
    • Introduction: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω−3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω−3 (and ω−6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω−6 LCPUFA and anti-angiogenic ones from ω−3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω−6 and ω−3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω−3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. Objectives: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. Methods: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. Results: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω−6 and ω−3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω−6, ω−3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω−3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. Conclusions: CYP2J2 inhibition augmented the inhibitory effect of ω−3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD. © 2022 Elsevier Inc.
  •  
25.
  • Jones, Benedict C, et al. (author)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • In: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Journal article (peer-reviewed)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 66

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view