SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rixen Christian) srt2:(2020-2024)"

Search: WFRF:(Rixen Christian) > (2020-2024)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lembrechts, Jonas J., et al. (author)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Journal article (peer-reviewed)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
2.
  • Fry, Ellen L., et al. (author)
  • Vegetation type, not the legacy of warming, modifies the response of microbial functional genes and greenhouse gas fluxes to drought in Oro-Arctic and alpine regions
  • 2023
  • In: FEMS microbiology ecology. - 1574-6941. ; 99:12
  • Journal article (peer-reviewed)abstract
    • Climate warming and summer droughts alter soil microbial activity, affecting greenhouse gas (GHG) emissions in Arctic and alpine regions. However, the long-term effects of warming, and implications for future microbial resilience, are poorly understood. Using one alpine and three Arctic soils subjected to in situ long-term experimental warming, we simulated drought in laboratory incubations to test how microbial functional-gene abundance affects fluxes in three GHGs: carbon dioxide, methane, and nitrous oxide. We found that responses of functional gene abundances to drought and warming are strongly associated with vegetation type and soil carbon. Our sites ranged from a wet, forb dominated, soil carbon-rich systems to a drier, soil carbon-poor alpine site. Resilience of functional gene abundances, and in turn methane and carbon dioxide fluxes, was lower in the wetter, carbon-rich systems. However, we did not detect an effect of drought or warming on nitrous oxide fluxes. All gene-GHG relationships were modified by vegetation type, with stronger effects being observed in wetter, forb-rich soils. These results suggest that impacts of warming and drought on GHG emissions are linked to a complex set of microbial gene abundances and may be habitat-specific.
  •  
3.
  • Henry, Greg H.R., et al. (author)
  • The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems
  • 2022
  • In: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 550-571
  • Journal article (peer-reviewed)abstract
    • The International Tundra Experiment (ITEX) was founded in 1990 as a network of scientists studying responses of tundra ecosystems to ambient and experimental climate change at Arctic and alpine sites across the globe. Common measurement and experimental design protocols have facilitated synthesis of results across sites to gain biome-wide insights of climate change impacts on tundra. This special issue presents results from more than 30 years of ITEX research. The importance of snow regimes, bryophytes, and herbivory are highlighted, with new protocols and studies proposed. The increasing frequency and magnitude of extreme climate events is shown to have strong effects on plant reproduction. The most consistent plant trait response across sites is an increase in vegetation height, especially for shrubs. This will affect surface energy balance, carbon and nutrient dynamics and trophic level interactions. Common garden studies show adaptation responses in tundra species to climate change but they are species and regionally specific. Recommendations are made including establishing sites near northern communities to increase reciprocal engagement with local knowledge holders and establishing multi-factor experiments. The success of ITEX is based on collegial cooperation among researchers and the network remains focused on documenting and understanding impacts of environmental change on tundra ecosystems.
  •  
4.
  • Lett, Signe, et al. (author)
  • Can bryophyte groups increase functional resolution in tundra ecosystems?
  • 2022
  • In: Arctic Science. - Ottawa : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 609-637
  • Journal article (peer-reviewed)abstract
    • The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.
  •  
5.
  • Prager, Case M., et al. (author)
  • Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment : An example from the WaRM Network
  • 2022
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 12:10
  • Journal article (peer-reviewed)abstract
    • A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
  •  
6.
  • Prevéy, Janet S., et al. (author)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • In: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Journal article (peer-reviewed)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
7.
  • Rasmus, Sirpa, et al. (author)
  • Policy documents considering biodiversity, land use, and climate in the European Arctic reveal visible, hidden, and imagined nexus approaches
  • 2024
  • In: One Earth. - : Cell Press. - 2590-3330 .- 2590-3322. ; 7:2, s. 265-279
  • Journal article (peer-reviewed)abstract
    • The Arctic is experiencing rapid and interlinked socio-environmental changes. Therefore, governance approaches that take the complex interactions between climate change, biodiversity loss, increasing land use pressures, and local livelihoods into account are needed: nexus approaches. However, an overview of whether and to what extent Arctic policies address these nexus elements in concert has been missing. Here we analyzed a large sample of publicly available assessment reports and policy documents from the terrestrial European Arctic. Our results show that, although nexus approaches are widely adopted in Arctic policy reporting, the emphasis varies among the governance levels, and documents underestimate certain interactions: local communities and traditional livelihoods are seldom seen as actors with agency and impact. Practical implementations were identified as potential advancements in Arctic governance: ecosystem-specific, technological, and authoritative solutions; co-production of knowledge; and adaptive co-management. Implementation of nexus approaches can promote more holistic environmental governance and guide cross-sectoral policies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view