SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarneel Judith M.) srt2:(2020-2024)"

Sökning: WFRF:(Sarneel Judith M.) > (2020-2024)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stroud, J.T., et al. (författare)
  • Priority effects transcend scales and disciplines in biology
  • 2024
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383. ; 39:7, s. 677-688
  • Forskningsöversikt (refereegranskat)abstract
    • Although primarily studied through the lens of community ecology, phenomena consistent with priority effects appear to be widespread across many different scenarios spanning a broad range of spatial, temporal, and biological scales. However, communication between these research fields is inconsistent and has resulted in a fragmented co-citation landscape, likely due to the diversity of terms used to refer to priority effects across these fields. We review these related terms, and the biological contexts in which they are used, to facilitate greater cross-disciplinary cohesion in research on priority effects. In breaking down these semantic barriers, we aim to provide a framework to better understand the conditions and mechanisms of priority effects, and their consequences across spatial and temporal scales.
  •  
2.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
3.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: ECOLOGY LETTERS. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
4.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
5.
  • Ludewig, Kristin, et al. (författare)
  • Phenology and morphology of the invasive legume Lupinus polyphyllus along a latitudinal gradient in Europe
  • 2022
  • Ingår i: NeoBiota. - : Pensoft Publishers. - 1619-0033 .- 1314-2488. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant phenology, i. e. the timing of life cycle events, is related to individual fitness and species distributionranges. Temperature is one of the most important drivers of plant phenology together with day length.The adaptation of their phenology may be important for the success of invasive plant species. The presentstudy aims at understanding how the performance and the phenology of the invasive legume Lupinuspolyphyllus vary with latitude. We sampled data across a >2000 km latitudinal gradient from Centralto Northern Europe. We quantified variation in phenology of flowering and fruiting of L. polyphyllususing >1600 digital photos of inflorescences from 220 individual plants observed weekly at 22 sites. Theday of the year at which different phenological phases were reached, increased 1.3–1.8 days per degreelatitude, whereas the growing degree days (gdd) required for these phenological phases decreased 5–16 gddper degree latitude. However, this difference disappeared, when the day length of each day included inthe calculation of gdd was considered. The day of the year of the earliest and the latest climatic zone toreach any of the three studied phenological phases differed by 23–30 days and temperature requirementsto reach these stages differed between 62 and 236 gdd. Probably, the invasion of this species will furtherincrease in the northern part of Europe over the next decades due to climate warming. For invasive speciescontrol, our results suggest that in countries with a large latitudinal extent, the mowing date should shiftby ca. one week per 500 km at sites with similar elevations.
  •  
6.
  • Ludewig, Kristin, et al. (författare)
  • Phenology of Lupinus polyphyllus from Central to Northern Europe
  • 2022
  • Annan publikationabstract
    • Plant phenology, i. e. the timing of life cycle events, is related to individual fitness and species distribution ranges. Among the environmental factors, phenology is mostly driven by temperature and day length. Rapid adaptation of their phenology may also be important for the success of invasive plant species. Our main aim was to understand how the performance, timing, and temperature dependence of the phenology of the invasive legume Lupinus polyphyllus varies with latitude. L. polyphyllus is one of the most frequent invasive species in Europe, and the gained information may help to make management more effective by adjustments to latitude and phenology.Methods:We quantified variation in phenology across a >2000 km latitudinal gradient from Central to Northern Europe. We sampled data of flowering and fruiting of L. polyphyllus using >1600 digital photos of inflorescences from 220 individual plants observed weekly at 22 locations. We calculated the accumulated growing degree days for each observation date at each site from the temperature data of the meteorological stations, which are listed in the metadata of the dataset.
  •  
7.
  • Ochoa-Hueso, Raúl, et al. (författare)
  • Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands
  • 2020
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 26:8, s. 4572-4582
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
  •  
8.
  •  
9.
  •  
10.
  • Sarneel, Judith M., et al. (författare)
  • Species traits interact with stress level to determine intraspecific facilitation and competition
  • 2022
  • Ingår i: Journal of Vegetation Science. - : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: Flooding and drought stress are expected to increase significantly across the world and plant responses to these abiotic changes may be mediated by plant–plant interactions. Stress tolerance and recovery often require a biomass investment that may have consequences for these plant–plant interactions. Therefore, we questioned whether phenotypic plasticity in response to flooding and drought affected the balance between competition and facilitation for species with specific adaptations to drought or flooding.Location: Utrecht University. Methods: Stem elongation, root porosity, root:shoot ratio and biomass production were measured for six species during drought, well-drained and submerged conditions when grown alone or together with conspecifics. We quantified competition and facilitation as the ‘neighbour intensity effect’ directly after the 10-day treatment and again after a seven-day recovery period in well-drained conditions.Results: Water stress, planting density and species identity interactively affected standardized stem elongation in a way that could lead to facilitation during submergence for species that preferably grow in wet soils. Root porosity was affected by the interaction between neighbour presence and time-step. Plant traits were only slightly affected during drought. The calculated neighbour interaction effect indicated facilitation for wetland species during submerged conditions and, after a period to recover from flooding, for species that prefer dry habitats.Conclusions: Our results imply that changing plant–plant interactions in response to submergence and to a lesser extent to drought should be considered when predicting vegetation dynamics due to changing hydroclimatic regimes. Moreover, facilitation during a recovery period may enable species maladapted to flooding to persist.
  •  
11.
  • Baladrón, Alejandro, et al. (författare)
  • Trapped between drowning and desiccation : riverine plants under hydropeaking
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 829
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydropeaking is part of hydropower production. The discontinuous release of turbined water during hydropeaking generates sudden rise and falls of the water levels, as well as extended droughts. These artificial flow fluctuations impose challenging growing conditions for riverine vegetation. In order to identify vulnerable/resistant plant species to hydropeaking and to evaluate the impact of contrasting hydropeaking scenarios (simplified (i.e., sudden deep floods, frequent soil saturation and drought) and real-life, power plant-induced scenarios), we measured germination, survival, and morphological and physiological attributes of a selection of 14 plant species commonly found along riparian areas. Species were subject to different hydropeaking scenarios during three months (vegetative period) in the field and in a greenhouse. Half of the species performed worse under hydropeaking in comparison to the control (e.g., less germination and biomass, lower growth rates, reduced stem and root length, physiological stress) but none of the tested hydropeaking scenarios was clearly more disruptive than others. Betula pubescens, Alnus incana and Filipendula ulmifolia showed the largest vulnerability to hydropeaking, while other species (e.g., Carex acuta) were resistant to it. Both in the field and in the greenhouse, plants in perturbed scenarios accumulated more 13C than in the control scenario indicating limited capacity to perform 13C isotope discrimination and evidencing plant physiological stress. The highest 13C abundances were found under drought or flooding conditions in the greenhouse, and under the highest hydropeaking intensities in the field (e.g., Betula pubescens). Our results suggest that any hydropeaking scheme can be equally detrimental in terms of plant performance. Hydropeaking schemes that combine periods of severe drought with long and frequent flooding episodes may create a hostile environment for riverine species. Further research on "hydropeaking-tolerant" plant traits is key to draw the boundaries beyond which riverine species can germinate, grow and complete their life cycle under hydropeaking.
  •  
12.
  • Bejarano, Maria D., et al. (författare)
  • Shifts in Riparian Plant Life Forms Following Flow Regulation
  • 2020
  • Ingår i: Forests. - : MDPI. - 1999-4907. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Flow regulation affects bordering riparian plant communities worldwide, but how different plant life forms are affected by river regulation still needs further research. In northern Sweden, we selected 10 rivers ranging from free-flowing to low, moderately, and highly regulated ones. In 94 reaches across those rivers, we evaluated the relative abundance of woody and herbaceous (i.e., graminoids and forbs) life forms, their species richness, and their relative presence. We also explored which, and to what extent, hydrological variables drove species assembly within each life form. The relative abundance and species richness of each life form decreased across river categories with increasing levels of regulation. This was particularly apparent in herbaceous life forms, and the most drastic decreases were observed in all life forms in moderately or highly regulated reaches. Additionally, when river regulation increased, the relative presence of many species from all life forms decreased. Unlike woody species, only a few new herbaceous species appeared in regulated reaches. A canonical correspondence analyses (CCA) revealed that a wide range of hydrological variables explained the occurrence of woody species, while fewer variables explained variation in the graminoid and forb life forms. We conclude that flow regulation and its intensity result into clear shifts in the relative abundance of different life forms, as well as in changes of within-group species richness and composition. Consequently, the modification of certain flow attributes in flow regulation schemes, as well as the intensity of these modifications, may alter the ratio between herbaceous and woody species, ultimately impacting the functions and benefits derived from each life form.
  •  
13.
  • Fanin, Nicolas, et al. (författare)
  • Relative Importance of Climate, Soil and Plant Functional Traits During the Early Decomposition Stage of Standardized Litter
  • 2020
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 23:5, s. 1004-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic factors have long been considered predominant in controlling decomposition rates at large spatial scales. However, recent research suggests that edaphic factors and plant functional traits may play a more important role than previously expected. In this study, we investigated how biotic and abiotic factors interacted with litter quality by analyzing decomposition rates for two forms of standardized litter substitutes: green tea (high-quality litter) and red tea (low-quality litter). We placed 1188 teabags at two different positions (forest floor and 8 cm deep) across 99 forest sites in France and measured 46 potential drivers at each site. We found that high-quality litter decomposition was strongly related to climatic factors, whereas low-quality litter decomposition was strongly related to edaphic factors and the identity of the dominant tree species in the stand. This indicates that the relative importance of climate, soil and plant functional traits in the litter decomposition process depends on litter quality, which was the predominant factor controlling decomposition rate in this experiment. We also found that burying litter increased decomposition rates, and that this effect was more important for green tea in drier environments. This suggests that changes in position (surface vs. buried) at the plot scale may be as important as the role of macroclimate on decomposition rates because of varying water availability along the soil profile. Acknowledging that the effect of climate on decomposition depends on litter quality and that the macroclimate is not necessarily the predominant factor at large spatial scales is the first step toward identifying the factors regulating decomposition rates from the local scale to the global scale.
  •  
14.
  • Hunter, William Ross, et al. (författare)
  • Using the Tea Bag Index to determine how two human pharmaceuticals affect litter decomposition by aquatic microorganisms
  • 2021
  • Ingår i: Ecotoxicology. - : Springer. - 0963-9292 .- 1573-3017. ; 30:6, s. 1272-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • This study demonstrates that independent additive effects of two human pharmaceuticals, the antibiotic trimethoprim and the artificial estrogen 17a-Ethinylestradiol (EE2), inhibit plant litter decomposition by aquatic microorganisms. The constant release of pharmaceuticals, such as these, has the potential to affect aquatic microbial metabolism and alter biogeochemical cycling of carbon and nutrients. Here we advance the Tea Bag Index (TBI) for decomposition by using it in a series of contaminant exposure experiments testing how interactions between trimethoprim and EE2 affect aquatic microbial activity. The TBI is a citizen science tool used to test microbial activity by measuring the differential degradation of green and rooibos tea as proxies for respectively labile and recalcitrant litter decomposition. Exposure to either trimethoprim or EE2 decreased decomposition of green tea, suggesting additive effects upon microbial activity. Exposure to EE2 alone decreased rooibos tea decomposition. Consequently, trimethoprim and EE2 stabilized labile organic matter against microbial degradation and restricted decomposition. We propose that the method outlined could provide a powerful tool for testing the impacts of multiple interacting pollutants upon microbial activity, at a range of scales, across aquatic systems and over ecologically relevant time scales.
  •  
15.
  • Pioli, Silvia, et al. (författare)
  • Linking plant litter microbial diversity to microhabitat conditions, environmental gradients and litter mass loss : Insights from a European study using standard litter bags
  • 2020
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier. - 0038-0717 .- 1879-3428. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant litter decomposition is a key process for carbon dynamics and nutrient cycling in terrestrial ecosystems. The interaction between litter properties, climatic conditions and soil attributes, influences the activity of microorganisms responsible for litter mineralization. So far, studies using standardized litters to investigate the response of bacterial and fungal communities under different environmental conditions are scarce, especially along wide geographic ranges.We used a standardized protocol to investigate the diversity of bacteria and fungi in plant litter with the aim of: (i) comparing the microbial communities of native and exotic litters with the community of local soil along a European transect from northern Finland to southern Italy, (ii) defining whether and to what extent, litter types with different traits represent selective substrates for microbial communities, (iii) disentangling the abiotic drivers of microbial diversity, and (iv) correlating the microbial diversity and species co-occurrences patterns with litter mass loss.We buried native litter and three exotic standardized litters (Deschampsia cespitosa, rooibos tea and green tea) at 12 European study sites. We determined litter mass loss after 94 days. We used an automated molecular DNA-based fingerprinting (ARISA) to profile the bacterial and fungal communities of each litter type and soil (180 samples in total).Microbial communities in native and exotic litters differed from local soil assemblages. Green tea and D. cespitosa litter represented more selective substrates compared to native litter and rooibos. Soil moisture and soil temperature were the major drivers of microbial community structure at larger scales, though with varying patterns according to litter type. Soil attributes (i.e. moisture and C/N ratios) better explained the differences in microbial abundances than litter type. Green tea degraded faster than all other litter types and accounted for the largest number of positive co-occurrences among microbial taxa. Litter mass loss was positively correlated with fungal evenness and with the percentage of positive co-occurrences between fungi.Our findings suggest that the microbial community at larger scales reflects the complex interplay between litter type and soil attributes, with the latter exerting a major influence. Mass loss patterns are in part determined by inter- and intra-kingdom interactions and fungal diversity.
  •  
16.
  • Sanden, Taru, et al. (författare)
  • Learning Science during Teatime : Using a Citizen Science Approach to Collect Data on Litter Decomposition in Sweden and Austria
  • 2020
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 12:18, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The decay of organic material-litter decomposition-is a critical process for life on Earth and an essential part of the global carbon cycle. Yet, this basic process remains unknown to many citizens. The Tea Bag Index (TBI) measures decomposition in a standardized, measurable, achievable, climate-relevant, and time-relevant way by burying commercial tea bags in soil for three months and calculating proxies to characterize the decomposition process (expressed as decomposition rate (k) and stabilization factor (S)). We measured TBI at 8 cm soil depth with the help of school and farm citizen scientists in 2015 in Sweden and in 2016 in Austria. Questionnaires to the participating schools and farms enabled us to capture lessons learned from this participatory data collection. In total >5500 citizen scientists participated in the mass experiments, and approximately 50% of the tea bags sent out yielded successful results that fell well within previously reported ranges. The average decomposition rates (k) ranged from 0.008 to 0.012 g d(-1) in Sweden and from 0.012 to 0.015 g d(-1) in Austria. Stabilization factors (S) were up to four times higher in Sweden than Austria. Taking part in a global experiment was a great incentive for participants, and in future experiments the citizen scientists and TBI would benefit from having enhanced communication between the researchers and participants about the results gained.
  •  
17.
  • Sofo, Adriano, et al. (författare)
  • Earthworm-driven changes in soil chemico-physical properties, soil bacterial microbiota, tree/tea litter decomposition, and plant growth in a mesocosm experiment with two plant species
  • 2023
  • Ingår i: PLANTS. - : MDPI. - 2223-7747. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Earthworms and soil microorganisms contribute to soil health, quality, and fertility, but their importance in agricultural soils is often underestimated. This study aims at examining whether and to what extent the presence of earthworms (Eisenia sp.) affected the (a) soil bacterial community composition, (b) litter decomposition, and (c) plant growth (Brassica oleracea L., broccoli; Vicia faba L., faba bean). We performed a mesocosm experiment in which plants were grown outdoors for four months with or without earthworms. Soil bacterial community structure was evaluated by a 16S rRNA-based metabarcoding approach. Litter decomposition rates were determined by using the tea bag index (TBI) and litter bags (olive residues). Earthworm numbers almost doubled throughout the experimental period. Independently of the plant species, earthworm presence had a significant impact on the structure of soil bacterial community, in terms of enhanced α- and β-diversity (especially that of Proteobacteria, Bacteroidota, Myxococcota, and Verrucomicrobia) and increased 16S rRNA gene abundance (+89% in broccoli and +223% in faba bean). Microbial decomposition (TBI) was enhanced in the treatments with earthworms, and showed a significantly higher decomposition rate constant (kTBI) and a lower stabilization factor (STBI), whereas decomposition in the litter bags (dlitter) increased by about 6% in broccoli and 5% in faba bean. Earthworms significantly enhanced root growth (in terms of total length and fresh weight) of both plant species. Our results show the strong influence of earthworms and crop identity in shaping soil chemico-physical properties, soil bacterial community, litter decomposition and plant growth. These findings could be used for developing nature-based solutions that ensure the long-term biological sustainability of soil agro- and natural ecosystems.
  •  
18.
  • Souza e Brito, Betania Guedes, et al. (författare)
  • Litter decomposition in wet and dry ecosystems of the Brazilian Cerrado
  • 2020
  • Ingår i: Soil Research. - : CSIRO Publishing. - 1838-675X. ; 58:4, s. 371-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of plant litter is a crucial process in carbon and nutrient cycling in all ecosystems, but our understanding of drivers of this process in Brazilian Cerrado (savanna) ecosystems is limited. We determined the decomposition rate and the stabilisation factor in areas of cerrado sensu stricto and palm swamp (vereda) in Bonito de Minas, Minas Gerais, south-eastern Brazil. These two major Cerrado ecosystems differ markedly in environmental conditions, but primarily in water and soil conditions. We used the standardised Tea Bag Index method, characterised soil parameters, and microbial activity to evaluate the decomposition process between these ecosystems. We found higher decomposition rates in the palm swamp compared to cerrado sensu stricto, possibly due to higher soil temperature and humidity conditions and higher microbial biomass.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (16)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sarneel, Judith M. (18)
Laudon, Hjalmar (3)
Alatalo, Juha M. (3)
Smith, Stuart W. (3)
Barrio, Isabel C. (3)
Bejarano, Maria D. (3)
visa fler...
Aurela, Mika (3)
Thomas, Haydn J.D. (3)
Carbognani, Michele (3)
Lembrechts, Jonas J. (3)
Scheffers, Brett R. (3)
Fanin, Nicolas (3)
Augusto, Laurent (3)
Crowther, Thomas W. (3)
van den Hoogen, Joha ... (3)
Ochoa-Hueso, Raúl (3)
Verheyen, Kris (2)
Montagnani, Leonardo (2)
Milberg, Per, 1959- (2)
Fuentes, David (2)
Beier, Claus (2)
Michelsen, Anders (2)
Eichberg, Carsten (2)
Alsafran, Mohammed H ... (2)
Althuizen, Inge H. J ... (2)
Vandvik, Vigdis (2)
Björkman, Mats P., 1 ... (2)
Björnsdóttir, Katrín (2)
Karlsson, Emma (2)
Fliessbach, Andreas (2)
Aleksanyan, Alla (2)
Myers-Smith, Isla H. (2)
Petraglia, Alessandr ... (2)
Tomaselli, Marcello (2)
Onipchenko, Vladimir ... (2)
Donath, Tobias W. (2)
Wang, Xuhui (2)
Peres, Carlos A. (2)
Marín, César (2)
Hero, Jean-Marc (2)
Lindmo, Sigrid (2)
Djukic, Ika (2)
Kepfer-Rojas, Sebast ... (2)
Ludewig, Kristin (2)
Hansen, Wiebke (2)
Christiansen, Casper ... (2)
Rebmann, Corinna (2)
Fares, Silvano (2)
Limousin, Jean Marc (2)
Eisenhauer, Nico (2)
visa färre...
Lärosäte
Umeå universitet (16)
Göteborgs universitet (3)
Sveriges Lantbruksuniversitet (3)
Linköpings universitet (2)
Stockholms universitet (1)
Lunds universitet (1)
visa fler...
Karlstads universitet (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy