SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sobeck J.) srt2:(2023)"

Search: WFRF:(Sobeck J.) > (2023)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jones, Amy M., et al. (author)
  • SDSS-IV from 2014 to 2016 : A Detailed Demographic Comparison over Three Years
  • 2023
  • In: Publications of the Astronomical Society of the Pacific. - 0004-6280. ; 135:1054
  • Journal article (peer-reviewed)abstract
    • The Sloan Digital Sky Survey (SDSS) is one of the largest international astronomy organizations. We present demographic data based on surveys of its members from 2014, 2015 and 2016, during the fourth phase of SDSS (SDSS-IV). We find about half of SDSS-IV collaboration members were based in North America, a quarter in Europe, and the remainder in Asia and Central and South America. Overall, 26%-36% are women (from 2014 to 2016), up to 2% report non-binary genders. 11%-14% report that they are racial or ethnic minorities where they live. The fraction of women drops with seniority, and is also lower among collaboration leadership. Men in SDSS-IV were more likely to report being in a leadership role, and for the role to be funded and formally recognized. SDSS-IV collaboration members are twice as likely to have a parent with a college degree, than the general population, and are ten times more likely to have a parent with a PhD. This trend is slightly enhanced for female collaboration members. Despite this, the fraction of first generation college students is significant (31%). This fraction increased among collaboration members who are racial or ethnic minorities (40%-50%), and decreased among women (15%-25%). SDSS-IV implemented many inclusive policies and established a dedicated committee, the Committee on INclusiveness in SDSS. More than 60% of the collaboration agree that the collaboration is inclusive; however, collaboration leadership more strongly agree with this than the general membership. In this paper, we explain these results in full, including the history of inclusive efforts in SDSS-IV. We conclude with a list of suggested recommendations based on our findings, which can be used to improve equity and inclusion in large astronomical collaborations, which we argue is not only moral, but will also optimize their scientific output.
  •  
2.
  • Usher, Christopher, et al. (author)
  • Rubin Observatory LSST Stars Milky Way and Local Volume Star Clusters Roadmap
  • 2023
  • In: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1049
  • Journal article (peer-reviewed)abstract
    • The Vera C. Rubin Observatory will undertake the Legacy Survey of Space and Time, providing an unprecedented, volume-limited catalog of star clusters in the Southern Sky, including Galactic and extragalactic star clusters. The Star Clusters subgroup of the Stars, Milky Way and Local Volume Working Group has identified key areas where Rubin Observatory will enable significant progress in star cluster research. This roadmap represents our science cases and preparation for studies of all kinds of star clusters from the Milky Way out to distances of tens of megaparsecs.
  •  
3.
  • Wanderley, Fabio, et al. (author)
  • Stellar Characterization and Radius Inflation of Hyades M-dwarf Stars from the APOGEE Survey
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 951:2
  • Journal article (peer-reviewed)abstract
    • We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M (& ODOT;) < M < 0.6 M (& ODOT;)) from the Hyades open cluster using high-resolution H-band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 & PLUSMN; 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% & PLUSMN; 2.3% and 2.4% & PLUSMN; 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% & PLUSMN; 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with & SIM;20%-40% spot coverage.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view