SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sowa J) srt2:(2020-2024)"

Search: WFRF:(Sowa J) > (2020-2024)

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Solmi, M, et al. (author)
  • 2022
  • In: Journal of affective disorders. - : Elsevier BV. - 1573-2517 .- 0165-0327. ; 299, s. 367-376
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  • d'Alessandro, Elisa, et al. (author)
  • Thrombo-Inflammation in Cardiovascular Disease : An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis
  • 2020
  • In: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 120:4, s. 538-564
  • Journal article (peer-reviewed)abstract
    • Thrombo-inflammation describes the complex interplay between blood coagulation and inflammation that plays a critical role in cardiovascular diseases. The third Maastricht Consensus Conference on Thrombosis assembled basic, translational, and clinical scientists to discuss the origin and potential consequences of thrombo-inflammation in the etiology, diagnostics, and management of patients with cardiovascular disease, including myocardial infarction, stroke, and peripheral artery disease. This article presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following topics: (1) challenges of the endothelial cell barrier; (2) circulating cells and thrombo-inflammation, focused on platelets, neutrophils, and neutrophil extracellular traps; (3) procoagulant mechanisms; (4) arterial vascular changes in atherogenesis; attenuating atherosclerosis and ischemia/reperfusion injury; (5) management of patients with arterial vascular disease; and (6) pathogenesis of venous thrombosis and late consequences of venous thromboembolism.
  •  
4.
  • Elvsashagen, T, et al. (author)
  • The genetic architecture of human brainstem structures and their involvement in common brain disorders
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4016-
  • Journal article (peer-reviewed)abstract
    • Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders.
  •  
5.
  •  
6.
  • Hawes, I. A., et al. (author)
  • Viral co-infection, autoimmunity, and CSF HIV antibody profiles in HIV central nervous system escape
  • 2023
  • In: Journal of Neuroimmunology. - 0165-5728. ; 381
  • Journal article (peer-reviewed)abstract
    • Antiretroviral therapy (ART) suppresses plasma and cerebrospinal fluid (CSF) HIV replication. Neurosymptomatic (NS) CSF escape is a rare exception in which CNS HIV replication occurs in the setting of neurologic impairment. The origins of NS escape are not fully understood. We performed a case-control study of asymptomatic (AS) escape and NS escape subjects with HIV-negative subjects as controls in which we investigated differential immunoreactivity to self-antigens in the CSF of NS escape by employing neuroanatomic CSF immunostaining and massively multiplexed self-antigen serology (PhIP-Seq). Additionally, we utilized pan-viral serology (VirScan) to deeply profile the CSF anti-viral antibody response and metagenomic next-generation sequencing (mNGS) for pathogen detection. We detected Epstein-Barr virus (EBV) DNA more frequently in the CSF of NS escape subjects than in AS escape subjects. Based on immunostaining and PhIP-Seq, there was evidence for increased immunoreactivity against self-antigens in NS escape CSF. Finally, VirScan revealed several immunodominant epitopes that map to the HIV envelope and gag proteins in the CSF of AS and NS escape subjects. Whether these additional inflammatory markers are byproducts of an HIV-driven process or whether they independently contribute to the neuropathogenesis of NS escape will require further study.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Vazquez, SE, et al. (author)
  • Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq
  • 2022
  • In: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Journal article (other academic/artistic)abstract
    • Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view