SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Storey S) srt2:(2010-2014)"

Search: WFRF:(Storey S) > (2010-2014)

  • Result 1-25 of 49
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aghion, S., et al. (author)
  • A moiré deflectometer for antimatter
  • 2014
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 5
  • Journal article (peer-reviewed)abstract
    • The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.
  •  
2.
  • Amole, C., et al. (author)
  • The ALPHA antihydrogen trapping apparatus
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 735, s. 319-340
  • Journal article (peer-reviewed)abstract
    • The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.
  •  
3.
  • Charlton, M, et al. (author)
  • Antiparticle sources for antihydrogen production and trapping
  • 2011
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596. ; 262, s. 012001-
  • Journal article (peer-reviewed)abstract
    • Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed. Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed.
  •  
4.
  • Andresen, G. B., et al. (author)
  • Antihydrogen annihilation reconstruction with the ALPHA silicon detector
  • 2012
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 684, s. 73-81
  • Journal article (peer-reviewed)abstract
    • The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.
  •  
5.
  • Andresen, G. B., et al. (author)
  • Confinement of antihydrogen for 1,000 seconds
  • 2011
  • In: Nature Physics. - 1745-2473 .- 1745-2481. ; 7:7, s. 558-564
  • Journal article (peer-reviewed)abstract
    • Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.
  •  
6.
  • Andresen, G. B., et al. (author)
  • Search for trapped antihydrogen
  • 2011
  • In: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 695:1-4, s. 95-104
  • Journal article (peer-reviewed)abstract
    • We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 107 antiprotons with 1.3ï¿œ109 positrons to produce 6ï¿œ105 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.
  •  
7.
  • Andresen, G. B., et al. (author)
  • The ALPHA-detector : Module Production and Assembly
  • 2012
  • In: Journal of Instrumentation. - 1748-0221. ; 7, s. C01051-
  • Journal article (peer-reviewed)abstract
    • ALPHA is one of the experiments situated at CERN's Antiproton Decelerator (AD). A Silicon Vertex Detector (SVD) is placed to surround the ALPHA atom trap. The main purpose of the SVD is to detect and locate antiproton annihilation events by means of the emitted charged pions. The SVD system is presented with special focus given to the design, fabrication and performance of the modules.
  •  
8.
  • Andresen, G. B., et al. (author)
  • Trapped antihydrogen
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 468:7324, s. 673-676
  • Journal article (peer-reviewed)abstract
    • Antimatter was first predicted1 in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced2, 3 at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition4), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter5. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 107 antiprotons and 7 × 108 positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.
  •  
9.
  • Amole, C., et al. (author)
  • Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
  • 2012
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 14, s. 015010-
  • Journal article (peer-reviewed)abstract
    • Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilate. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
  •  
10.
  • Andresen, G. B., et al. (author)
  • Evaporative Cooling of Antiprotons to Cryogenic Temperatures
  • 2010
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:1, s. 013003-
  • Journal article (peer-reviewed)abstract
    • We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.
  •  
11.
  • Madsen, N, et al. (author)
  • Search for trapped antihydrogen in ALPHA
  • 2011
  • In: Canadian journal of physics (Print). - 0008-4204 .- 1208-6045. ; 89:1, s. 7-16
  • Journal article (peer-reviewed)abstract
    • Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit the use of precision atomic physics tools to carry out comparisons of antihydrogen and hydrogen. ALPHA has addressed these challenges. Control of the plasma sizes has helped to lower the influence of the multipole field used in the neutral atom trap, and thus lowered the temperature of the created atoms. Finally, the first systematic attempt to identify trapped antihydrogen in our system is discussed. This discussion includes special techniques for fast release of the trapped anti-atoms, as well as a silicon vertex detector to identify antiproton annihilations. The silicon detector reduces the background of annihilations, including background from antiprotons that can be mirror trapped in the fields of the neutral atom trap. A description of how to differentiate between these events and those resulting from trapped antihydrogen atoms is also included.
  •  
12.
  • Van Der Werf, D. P., et al. (author)
  • Antimatter transport processes
  • 2010
  • In: AAPS Journal. - : IOP Publishing. - 1550-7416. ; 257:1
  • Journal article (peer-reviewed)abstract
    • A comparison of the 1S-2S transitions of hydrogen and antihydrogen will yield a stringent test of CPT conservation. Necessarily, the antihydrogen atoms need to be trapped to perform high precision spectroscopy measurements. Therefore, an approximately 0.75 T deep neutral atom trap, equivalent to about 0.5 K for ground state (anti)hydrogen atoms, has been superimposed on a Penning-Malmberg trap in which the anti-atoms are formed. The antihydrogen atoms are produced following a number of steps. A bunch of antiprotons from the CERN Antiproton Decelerator is caught in a Penning-Malmberg trap and subsequently sympathetically cooled and then compressed using rotating wall electric fields. A positron plasma, formed in a separate accumulator, is transported to the main system and also compressed. Antihydrogen atoms are then formed by mixing the antiprotons and positrons. The velocity of the anti-atoms, and their binding energies, will strongly depend on the initial conditions of the constituent particles, for example their temperatures and densities, and on the details of the mixing process. In this paper the complete lifecycle of antihydrogen atoms will be presented, starting with the production of the constituent antiparticles and the description of the manipulations necessary to prepare them appropriately for antihydrogen formation. The latter will also be described, as will the possible fates of the anti-atoms.
  •  
13.
  • Andresen, G. B., et al. (author)
  • Autoresonant Excitation of Antiproton Plasmas
  • 2011
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:2, s. 025002-
  • Journal article (peer-reviewed)abstract
    • We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination
  •  
14.
  •  
15.
  • Butler, E., et al. (author)
  • Towards antihydrogen trapping and spectroscopy at ALPHA
  • 2011
  • In: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540. ; 199:1, s. 39-48
  • Journal article (peer-reviewed)abstract
    • Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN’s Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.
  •  
16.
  • Cannon, Christopher P., et al. (author)
  • Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO) : a randomised double-blind study
  • 2010
  • In: The Lancet. - 0140-6736 .- 1474-547X. ; 375:9711, s. 283-293
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Variation in and irreversibility of platelet inhibition with clopidogrel has led to controversy about its optimum dose and timing of administration in patients with acute coronary syndromes. We compared ticagrelor, a more potent reversible P2Y12 inhibitor with clopidogrel in such patients. METHODS: At randomisation, an invasive strategy was planned for 13 408 (72.0%) of 18 624 patients hospitalised for acute coronary syndromes (with or without ST elevation). In a double-blind, double-dummy study, patients were randomly assigned in a one-to-one ratio to ticagrelor and placebo (180 mg loading dose followed by 90 mg twice a day), or to clopidogrel and placebo (300-600 mg loading dose or continuation with maintenance dose followed by 75 mg per day) for 6-12 months. All patients were given aspirin. The primary composite endpoint was cardiovascular death, myocardial infarction, or stroke. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00391872. FINDINGS: 6732 patients were assigned to ticagrelor and 6676 to clopidogrel. The primary composite endpoint occurred in fewer patients in the ticagrelor group than in the clopidogrel group (569 [event rate at 360 days 9.0%] vs 668 [10.7%], hazard ratio 0.84, 95% CI 0.75-0.94; p=0.0025). There was no difference between clopidogrel and ticagrelor groups in the rates of total major bleeding (691 [11.6%] vs 689 [11.5%], 0.99 [0.89-1.10]; p=0.8803) or severe bleeding, as defined according to the Global Use of Strategies To Open occluded coronary arteries, (198 [3.2%] vs 185 [2.9%], 0.91 [0.74-1.12]; p=0.3785). INTERPRETATION: Ticagrelor seems to be a better option than clopidogrel for patients with acute coronary syndromes for whom an early invasive strategy is planned.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Pedersen, G. K., et al. (author)
  • Molerområdets geologi – sedimenter, fossiler, askelag og glaicaltektonik
  • 2011
  • In: Geologisk Tidsskrift. - 1395-0150. ; :December 2011, s. 41-135
  • Journal article (pop. science, debate, etc.)abstract
    • Abstract in Danish I den vestlige del af Limfjorden findes en række kystklinter, hvor eocæne lag er blottet. Moler er en ca. 55-56 millioner år gammel diatomit, som indeholder lag af uforvitret vulkansk aske samt et stort antal velbevarede marine og terrestriske fossiler. Stolleklint Leret og Fur Formationen har et usædvanligt fossilselskab med mange repræsentanter for insekter, fisk, fugle og skildpadder men meget få kalkskallede, hvirvelløse dyr. De vulkanske askelag afspejler et stort antal gigantiske, eksplosive udbrud inden for en kort periode, hvor lavatilstrømningen var stor, samtidig med at udbruddene skete på lavt vand i den nydannede oceanbund. For ca. 25.000 år siden dannede fremrykkende iskapper folder og overskydninger i moler, askelag og glaciale sedimenter. Molerområdets geologi kan sammenfattes i følgende citat: ”…talrige tynde lag af sort vulkansk Aske...træde selv på lang Afstand tydelig frem i det hvide Moler …[Da de] ofte danner store Bugter og Folder, vil man forstaa, at de høje lyse Molerklinter i Solskin frembyde et malerisk og ejendommeligt Skue.” (N. V. Ussing i ’Danmarks Geologi’ 1904, s.143).
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Goodman, Shaun G., et al. (author)
  • Association of Proton Pump Inhibitor Use on Cardiovascular Outcomes With Clopidogrel and Ticagrelor : Outcomes With Clopidogrel and Ticagrelor
  • 2012
  • In: Circulation. - 0009-7322 .- 1524-4539. ; 125:8, s. 978-986
  • Journal article (peer-reviewed)abstract
    • Background-The clinical significance of the interaction between clopidogrel and proton pump inhibitors (PPIs) remains unclear. Methods and Results-We examined the relationship between PPI use and 1-year cardiovascular events (cardiovascular death, myocardial infarction, or stroke) in patients with acute coronary syndrome randomized to clopidogrel or ticagrelor in a prespecified, nonrandomized subgroup analysis of the Platelet Inhibition and Patient Outcomes (PLATO) trial. The primary end point rates were higher for individuals on a PPI (n = 6539) compared with those not on a PPI (n = 12 060) at randomization in both the clopidogrel (13.0% versus 10.9%; adjusted hazard ratio [HR], 1.20; 95% confidence interval [CI], 1.04 -1.38) and ticagrelor (11.0% versus 9.2%; HR, 1.24; 95% CI, 1.07-1.45) groups. Patients on non-PPI gastrointestinal drugs had similar primary end point rates compared with those on a PPI (PPI versus non-PPI gastrointestinal treatment: clopidogrel, HR, 0.98; 95% CI, 0.79-1.23; ticagrelor, HR, 0.89; 95% CI, 0.73-1.10). In contrast, patients on no gastric therapy had a significantly lower primary end point rate (PPI versus no gastrointestinal treatment: clopidogrel, HR, 1.29; 95% CI, 1.12-1.49; ticagrelor, HR, 1.30; 95% CI, 1.14-1.49). Conclusions-The use of a PPI was independently associated with a higher rate of cardiovascular events in patients with acute coronary syndrome receiving clopidogrel. However, a similar association was observed between cardiovascular events and PPI use during ticagrelor treatment and with other non-PPI gastrointestinal treatment. Therefore, in the PLATO trial, the association between PPI use and adverse events may be due to confounding, with PPI use more of a marker for, than a cause of, higher rates of cardiovascular events.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 49
Type of publication
journal article (48)
book chapter (1)
Type of content
peer-reviewed (44)
other academic/artistic (4)
pop. science, debate, etc. (1)
Author/Editor
Harrington, Robert A (15)
Nolan, P. (13)
Bertsche, W. (13)
Butler, E. (13)
Charlton, M. (13)
Fajans, J. (13)
show more...
Friesen, T. (13)
Jonsell, Svante (13)
Madsen, N. (13)
Menary, S. (13)
Olchanski, K. (13)
Pusa, P. (13)
Sarid, E. (13)
So, C. (13)
Wallentin, Lars (13)
Hydomako, R. (13)
Yamazaki, Y. (12)
Baquero-Ruiz, M. (12)
Cesar, C. L. (12)
Fujiwara, M. C. (12)
Gill, D. R. (12)
Hangst, J. S. (12)
Hardy, W. N. (12)
Kurchaninov, L. (12)
Olin, A. (12)
Povilus, A. (12)
Robicheaux, F. (12)
Silveira, D. M. (12)
Thompson, R. I. (12)
Ashkezari, M. D. (12)
Chapman, S. (12)
Andresen, G. B. (12)
Storey, J. W. (12)
Cannon, Christopher ... (12)
van der Werf, D. P. (11)
Hayden, M. E. (11)
Wurtele, J. S. (11)
Humphries, A. J. (11)
Bowe, P. D. (11)
James, Stefan K (10)
Becker, Richard C. (10)
Husted, Steen (9)
Mahaffey, Kenneth W. (9)
Steg, Philippe Gabri ... (8)
Hayano, R. S. (7)
Gutierrez, A. (6)
Agewall, S (6)
Storey, RF (6)
Eriksson, S. (6)
Deller, A. (6)
show less...
University
Uppsala University (19)
Stockholm University (13)
Karolinska Institutet (7)
Mid Sweden University (6)
Umeå University (1)
Royal Institute of Technology (1)
show more...
Lund University (1)
Chalmers University of Technology (1)
Linnaeus University (1)
show less...
Language
English (48)
Danish (1)
Research subject (UKÄ/SCB)
Natural sciences (16)
Medical and Health Sciences (6)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view