SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Yuehua) srt2:(2022)"

Search: WFRF:(Sun Yuehua) > (2022)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Raad, Jordi, et al. (author)
  • Speciation and population divergence in a mutualistic seed dispersing bird
  • 2022
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1
  • Journal article (peer-reviewed)abstract
    • Bird-mediated seed dispersal is crucial for the regeneration and viability of ecosystems, often resulting in complex mutualistic species networks. Yet, how this mutualism drives the evolution of seed dispersing birds is still poorly understood. In the present study we combine whole genome re-sequencing analyses and morphometric data to assess the evolutionary processes that shaped the diversification of the Eurasian nutcracker (Nucifraga), a seed disperser known for its mutualism with pines (Pinus). Our results show that the divergence and phylogeographic patterns of nutcrackers resemble those of other non-mutualistic passerine birds and suggest that their early diversification was shaped by similar biogeographic and climatic processes. The limited variation in foraging traits indicates that local adaptation to pines likely played a minor role. Our study shows that close mutualistic relationships between bird and plant species might not necessarily act as a primary driver of evolution and diversification in resource-specialized birds.
  •  
2.
  • Needham, Jessica F., et al. (author)
  • Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests
  • 2022
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28, s. 2895-2909
  • Journal article (peer-reviewed)abstract
    • The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view