SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Köck Thomas) "

Search: WFRF:(Köck Thomas)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Krus, Ulrika, et al. (author)
  • Pyruvate dehydrogenase kinase 1 controls mitochondrial metabolism and insulin secretion in INS-1 832/13 clonal beta-cells
  • 2010
  • In: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 429, s. 205-213
  • Journal article (peer-reviewed)abstract
    • Tight coupling between cytosolic and mitochondrial metabolism is key for GSIS (glucose-stimulated insulin secretion). In the present study we examined the regulatory contribution of PDH (pyruvate dehydrogenase) kinase 1, a negative regulator of PDH, to metabolic coupling in 832/13 clonal beta-cells. Knockdown of PDH kinase 1 with siRNA (small interfering RNA) reduced its mRNA (>80 %) and protein level (>40 %) after 72 h. PDH activity, glucose-stimulated cellular oxygen consumption and pyruvate-stimulated mitochondrial oxygen consumption increased 1.7- (P < 0.05), 1.6- (P < 0.05) and 1.6-fold (P < 0.05) respectively. Gas chromatography/MS revealed an altered metabolite profile upon silencing of PDH kinase 1, determined by increased levels of the tricarboxylic acid cycle intermediates malate, fumarate and alpha-ketoglutarate. These metabolic alterations were associated with exaggerated GSIS (5-fold compared with 3.1-fold in control cells; P < 0.01). Insulin secretion, provoked by leucine and dimethylsuccinate, which feed into the tricarboxylic acid cycle bypassing PDH, was unaffected. The oxygen consumption and metabolic data strongly suggest that knockdown of PDH kinase 1 in beta-cells permits increased metabolic flux of glucose-derived carbons into the tricarboxylic acid cycle via PDH. Enhanced insulin secretion is probably caused by increased generation of tricarboxylic acid cycle-derived reducing equivalents for mitochondrial electron transport to generate ATP and/or stimulatory metabolic intermediates. On the basis of these findings, we suggest that PDH kinase 1 is an important regulator of PDH in clonal beta-cells and that PDH kinase 1 and PDH are important for efficient metabolic coupling. Maintaining low PDH kinase I expression/activity, keeping PDH in a dephosphorylated and active state, may be important for beta-cells to achieve the metabolic flux rates necessary for maximal GSIS.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Spégel, Peter, et al. (author)
  • Metabolomic analyses reveal profound differences in glycolytic and tricarboxylic acid cycle metabolism in glucose-responsive and -unresponsive clonal beta-cell lines
  • 2011
  • In: Biochemical Journal. - 0264-6021. ; 435, s. 277-284
  • Journal article (peer-reviewed)abstract
    • Insulin secretion from pancreatic beta-cells is controlled by complex metabolic and energetic changes provoked by exposure to metabolic fuels. Perturbations in these processes lead to impaired insulin secretion, the ultimate cause of T2D (Type 2 diabetes). To increase our understanding of stimulus secretion coupling and metabolic processes potentially involved in the pathogenesis of T2D, a comprehensive investigation of the metabolic response in the glucose-responsive INS-1 832/13 and glucose-unresponsive INS-1 832/2 beta-cell lines was performed. For this metabolomics analysis, we used GC/MS (gas chromatography/mass spectrometry) combined with multivariate statistics. We found that perturbed secretion in the 832/2 line was characterized by disturbed coupling of glycolytic and TCA (tricarboxylic acid)-cycle metabolism. The importance of this metabolic coupling was reinforced by our observation that insulin secretion partially could be reinstated by stimulation of the cells with mitochondrial fuels which bypass glycolytic metabolism. Furthermore, metabolic and functional profiling of additional beta-cell lines (INS-1, INS-1 832/1) confirmed the important role of coupled glycolytic and TCA-cycle metabolism in stimulus-secretion coupling. Dependence of the unresponsive clones on glycolytic metabolism was paralleled by increased stabilization of HIF-1 alpha (hypoxia-inducible factor 1 alpha). The relevance of a similar perturbation for human T2D was suggested by increased expression of HIF-1 alpha target genes in islets from T2D patients.
  •  
7.
  • Spégel, Peter, et al. (author)
  • Time-resolved metabolomics analysis of beta-cells implicates the pentose phosphate pathway in the control of insulin release
  • 2013
  • In: Biochemical Journal. - 0264-6021. ; 450, s. 595-605
  • Journal article (peer-reviewed)abstract
    • Insulin secretion is coupled with changes in beta-cell metabolism. To define this process, 195 putative metabolites, mitochondrial respiration, NADP(+), NADPH and insulin secretion were measured within 15 mm of stimulation of clonal INS-1 832/13 beta-cells with glucose. Rapid responses in the major metabolic pathways of glucose occurred, involving several previously suggested metabolic coupling factors. The complexity of metabolite changes observed disagreed with the concept of one single metabolite controlling insulin secretion. The complex alterations in metabolite levels suggest that a coupling signal should reflect large parts of the beta-cell metabolic response. This was fulfilled by the NADPH/NADP(+) ratio, which was elevated (8-fold; P < 0.01) at 6 min after glucose stimulation. The NADPH/NADP+ ratio paralleled an increase in ribose 5-phosphate (>2.5-fold; P < 0.001). Inhibition of the pentose phosphate pathway by trans-dehydroepiandrosterone (DHEA) suppressed ribose 5-phosphate levels and production of reduced glutathione, as well as insulin secretion in INS-1 832/13 beta-cells and rat islets without affecting ATP production. Metabolite profiling of rat islets confirmed the glucose-induced rise in ribose 5-phosphate, which was prevented by DHEA. These findings implicate the pentose phosphate pathway, and support a role for NADPH and glutathione, in beta-cell stimulus-secretion coupling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view