SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Llobet D) "

Search: WFRF:(Llobet D)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Reimerdes, H., et al. (author)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Journal article (peer-reviewed)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
3.
  • Coda, S., et al. (author)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Journal article (peer-reviewed)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
4.
  • Coda, S., et al. (author)
  • Overview of the TCV tokamak program : Scientific progress and facility upgrades
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing. - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
  •  
5.
  • Marco, Aitor, et al. (author)
  • A Variable Structure Control Scheme Proposal for the Tokamak a Configuration Variable
  • 2019
  • In: Complexity. - : Hindawi Publishing Corporation. - 1076-2787 .- 1099-0526.
  • Journal article (peer-reviewed)abstract
    • Fusion power is the most significant prospects in the long-term future of energy in the sense that it composes a potentially clean, cheap, and unlimited power source that would substitute the widespread traditional nonrenewable energies, reducing the geographical dependence on their sources as well as avoiding collateral environmental impacts. Although the nuclear fusion research started in the earlier part of 20th century and the fusion reactors have been developed since the 1950s, the fusion reaction processes achieved have not yet obtained net power, since the generated plasma requires more energy to achieve and remain in necessary particular pressure and temperature conditions than the produced profitable energy. For this purpose, the plasma has to be confined inside a vacuum vessel, as it is the case of the Tokamak reactor, which consists of a device that generates magnetic fields within a toroidal chamber, being one of the most promising solutions nowadays. However, the Tokamak reactors still have several issues such as the presence of plasma instabilities that provokes a decay of the fusion reaction and, consequently, a reduction in the pulse duration. In this sense, since long pulse reactions are the key to produce net power, the use of robust and fast controllers arises as a useful tool to deal with the unpredictability and the small time constant of the plasma behavior. In this context, this article focuses on the application of robust control laws to improve the controllability of the plasma current, a crucial parameter during the plasma heating and confinement processes. In particular, a variable structure control scheme based on sliding surfaces, namely, a sliding mode controller (SMC) is presented and applied to the plasma current control problem. In order to test the validity and goodness of the proposed controller, its behavior is compared to that of the traditional PID schemes applied in these systems, using the RZIp model for the Tokamak a Configuration Variable (TCV) reactor. The obtained results are very promising, leading to consider this controller as a strong candidate to enhance the performance of the PID-based controllers usually employed in this kind of systems.
  •  
6.
  • Gonzalez-Granadillo, G, et al. (author)
  • Automated Cyber and Privacy Risk Management Toolkit
  • 2021
  • In: Sensors (Basel, Switzerland). - : MDPI AG. - 1424-8220. ; 21:16
  • Journal article (peer-reviewed)abstract
    • Addressing cyber and privacy risks has never been more critical for organisations. While a number of risk assessment methodologies and software tools are available, it is most often the case that one must, at least, integrate them into a holistic approach that combines several appropriate risk sources as input to risk mitigation tools. In addition, cyber risk assessment primarily investigates cyber risks as the consequence of vulnerabilities and threats that threaten assets of the investigated infrastructure. In fact, cyber risk assessment is decoupled from privacy impact assessment, which aims to detect privacy-specific threats and assess the degree of compliance with data protection legislation. Furthermore, a Privacy Impact Assessment (PIA) is conducted in a proactive manner during the design phase of a system, combining processing activities and their inter-dependencies with assets, vulnerabilities, real-time threats and Personally Identifiable Information (PII) that may occur during the dynamic life-cycle of systems. In this paper, we propose a cyber and privacy risk management toolkit, called AMBIENT (Automated Cyber and Privacy Risk Management Toolkit) that addresses the above challenges by implementing and integrating three distinct software tools. AMBIENT not only assesses cyber and privacy risks in a thorough and automated manner but it also offers decision-support capabilities, to recommend optimal safeguards using the well-known repository of the Center for Internet Security (CIS) Controls. To the best of our knowledge, AMBIENT is the first toolkit in the academic literature that brings together the aforementioned capabilities. To demonstrate its use, we have created a case scenario based on information about cyber attacks we have received from a healthcare organisation, as a reference sector that faces critical cyber and privacy threats.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Pujol-Moix, N, et al. (author)
  • Influence of ABO Locus on PFA-100 Collagen-ADP Closure Time Is Not Totally Dependent on the Von Willebrand Factor. Results of a GWAS on GAIT-2 Project Phenotypes
  • 2019
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 20:13
  • Journal article (peer-reviewed)abstract
    • (1) Background: In a previous study, we found that two phenotypes related to platelet reactivity, measured with the PFA-100 system, were highly heritable. The aim of the present study was to identify genetic determinants that influence the variability of these phenotypes: closure time of collagen-ADP (Col-ADP) and of collagen-epinephrine (Col-Epi). (2) Methods: As part of the GAIT-2 (Genetic Analysis of Idiopathic Thrombophilia (2) Project, 935 individuals from 35 large Spanish families were studied. A genome-wide association study (GWAS) with ≈ 10 M single nucleotide polymorphisms (SNPs) was carried out with Col-ADP and Col-Epi phenotypes. (3) Results: The study yielded significant genetic signals that mapped to the ABO locus. After adjusting both phenotypes for the ABO genotype, these signals disappeared. After adjusting for von Willebrand factor (VWF) or for coagulation factor VIII (FVIII), the significant signals disappeared totally for Col-Epi phenotype but only partially for Col-ADP phenotype. (4) Conclusion: Our results suggest that the ABO locus exerts the main genetic influence on PFA-100 phenotypes. However, while the effect of the ABO locus on Col-Epi phenotype is mediated through VWF and/or FVIII, the effect of the ABO locus on Col-ADP phenotype is partly produced through VWF and/or FVIII, and partly through other mechanisms.
  •  
11.
  • Sasikumar, A., et al. (author)
  • A virtual testing based search for optimum compression after impact strength in thin laminates using ply-thickness hybridization and unsymmetrical designs
  • 2020
  • In: Composites Science and Technology. - : Elsevier BV. - 0266-3538. ; 196
  • Journal article (peer-reviewed)abstract
    • In the quest to improve the compression after impact (CAI) strength of thin laminates, ply-hybrid laminates (where plies of different thicknesses are mixed) have been used in a previous study to mitigate the fibre failure and, consequently, improve the CAI strength. In the same study, hybrid laminates were proposed following qualitative design rules. In this paper, we systematically look for hybrid stacking sequences with improved damage tolerance by virtually testing all the laminates in a defined design space. While the laminates in the design space are made of intermediate and thick ply grades, the baseline laminate has only intermediate grade plies. Using an in-house numerical model, we virtually tested, (impact and CAI at two impact energies), all the candidate stacking sequences. The best hybrid laminates considerably improved the CAI strength over the baseline (31% and 40% improvement for the symmetric and unsymmetrical hybrid laminates, respectively). One of the best hybrid laminates was then manufactured and tested experimentally to validate the approach. Through virtual testing, this study demonstrates the benefits of using ply thickness hybrid laminates and the feasibility of optimizing the stacking sequence for impact damage tolerance.
  •  
12.
  • Shatskiy, Andrey, et al. (author)
  • Electrochemically Driven Water Oxidation by a Highly Active Ruthenium-Based Catalyst
  • 2019
  • In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 12:10, s. 2251-2262
  • Journal article (peer-reviewed)abstract
    • The highly active ruthenium-based water oxidation catalyst [Ru-X(mcbp)(OHn)(py)(2)] [mcbp(2-)=2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine; n=2, 1, and 0 for X=II, III, and IV, respectively], can be generated in a mixture of Ru-III and Ru-IV states from either [Ru-II(mcbp)(py)(2)] or [Ru-III(Hmcbp)(py)(2)](2+) precursors. The precursor complexes are isolated and characterized by single-crystal X-ray analysis, NMR, UV/Vis, EPR, and FTIR spectroscopy, ESI-HRMS, and elemental analysis, and their redox properties are studied in detail by electrochemical and spectroscopic methods. Unlike the parent catalyst [Ru(tda) (py)(2)] (tda(2-)=[2,2:6,2-terpyridine]-6,6-dicarboxylate), for which full transformation into the catalytically active species [Ru-IV(tda)(O)(py)(2)] could not be carried out, stoichiometric generation of the catalytically active Ru-aqua complex [Ru-X(mcbp)(OHn)(py)(2)] from the Ru-II precursor was achieved under mild conditions (pH7.0) and short reaction times. The redox properties of the catalyst were studied and its activity for electrocatalytic water oxidation was evaluated, reaching a maximum turnover frequency (TOFmax) of around 40000s(-1) at pH9.0 (from foot-of-the-wave analysis), which is comparable to the activity of the state-of-the-art catalyst [Ru-IV(tda)(O)(py)(2)].
  •  
13.
  • Testa, D., et al. (author)
  • LTCC magnetic sensors at EPFL and TCV: Lessons learnt for ITER
  • 2019
  • In: Fusion Engineering and Design. - : Elsevier BV. - 0920-3796. ; 146, s. 1553-1558
  • Journal article (peer-reviewed)abstract
    • Innovative 3D high-frequency magnetic sensors have been designed and manufactured in-house for installation on the Tokamak a Configuration Variable (TCV), and are currently routinely operational. These sensors combine the Low Temperature Co-fired Ceramic (LTCC) and the thick-film technologies, and are in various aspects similar to the majority of the inductive magnetic sensors currently being procured for ITER (290 out of 505 are LTCC-1D). The TCV LTCC-3D magnetic sensors provide measurements in the frequency range up to 1MHz of the perturbations to the toroidal (quasi-parallel: delta B-TOR(similar to)delta B-PAR), vertical (quasi-poloidal: delta B-V(ER)similar to delta B-PO(L)), and radial (delta B-RAD) magnetic field components, the latter being generally different from the component normal to the Last Closed Flux-Surface (delta B-NOR). The LTCC-3D delta B-RAD measurements improve significantly on the corresponding data with the saddle loops, which are mounted onto the wall and have a bandwidth of (similar to)3 kHz (due to the wall penetration time). The LTCC-3D delta B-TOR measurements (not previously available in TCV) provide evidence that certain MHD modes have a finite delta B-P(AR) at the LCFS, as recently calculated for pressure-driven instabilities. The LTCC-3D delta B-PO(L) measurements allow to cross-check the data obtained with the Mirnov coils, and led to the identification of large EM noise pick-up for the Mirnov DAQ. The LTCC-3D data for delta B-POL agree with those obtained with the Mirnov sensors in the frequency range where the respective data acquisition overlap, routinely up to 125kHz, and up to 250kHz in some discharges, when the EM noise pick-up on the Mirnov DAQ is removed. Finally, we look at what lessons can be learnt from our work for the forthcoming procurement, installation and operation of the LTCC-1D sensors in ITER.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view