SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1520 8559 OR L773:0734 2101 "

Search: L773:1520 8559 OR L773:0734 2101

  • Result 101-150 of 243
Sort/group result
   
EnumerationReferenceCoverFind
101.
  • Högberg, Hans, et al. (author)
  • Reactive sputtering of delta-ZrH2 thin films by high power impulse magnetron sputtering and direct current magnetron sputtering
  • 2014
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 32:4, s. 041510-
  • Journal article (peer-reviewed)abstract
    • Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H-2 plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at.% and O contents typically below 0.2 at.% as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of similar to 0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase delta-ZrH2 (CaF2 type structure) at H content greater thansimilar to 55 at.% and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5-7 GPa for the delta-ZrH2 films that is slightly harder than the similar to 5 GPa determined for Zr films and with coefficients of friction in the range of 0.12-0.18 to compare with the range of 0.4-0.6 obtained for Zr films. Wear resistance testing show that phase-pure delta-ZrH2 films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of similar to 100-120 mu Omega cm for the delta-ZrH2 films, which is slightly higher compared to Zr films with values in the range 70-80 mu Omega cm.
  •  
102.
  • Hörling, Anders, et al. (author)
  • Thermal stability of arc evaporated high aluminum-content Ti1−xAlxN thin films
  • 2002
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 20:5, s. 1815-1823
  • Journal article (peer-reviewed)abstract
    • The thermal stability of Ti1−xAlxN films deposited by arc evaporation from Ti–Al cathodes with 67 and 75 at. % aluminum, respectively, has been investigated. The microstructure of as-deposited and isothermally annealed samples were studied using scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. The chemical composition and elemental distribution were determined by energy dispersive x ray (EDX), Rutherford backscattering spectrometry, and EDX mapping. Transmission electron micrographs revealed a dense and columnar microstructure in the as-deposited condition. Films deposited from the 67 at. % cathodes were of cubic NaCl-structure phase, whereas films deposited from the 75 at. % cathodes exhibited nanocrystallites of wurzite-structure hexagonal-phase AlN in a cubic (c)-(Ti,Al)N matrix. Both films were stable during annealing at 900 °C/120 min with respect to phase composition and grain size. Annealing at 1100 °C of films deposited from the 67 at. % cathodes resulted in phase separation of c-TiN and h-AlN, via spinodal decomposition of c-TiN and c-AlN. (Ti,Al)N films undergo extensive stress relaxation and defect annihilation at relatively high temperatures, and aspects of these microstructural transformations are discussed.
  •  
103.
  • Jamnig, Andreas, et al. (author)
  • Manipulation of thin metal film morphology on weakly interacting substrates via selective deployment of alloying species
  • 2022
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 40:3
  • Journal article (peer-reviewed)abstract
    • We demonstrate a versatile concept for manipulating morphology of thin (& LE;25 nm) noble-metal films on weakly interacting substrates using growth of Ag on SiO2 as a model system. The concept entails deployment of minority metallic (Cu, Au, Al, Ti, Cr, and Mo) alloying species at the Ag-layer growth front. Data from in situ and real-time monitoring of the deposition process show that all alloying agents-when deployed together with Ag vapor throughout the entire film deposition-favor two-dimensional (2D) growth morphology as compared to pure Ag film growth. This is manifested by an increase in the substrate area coverage for a given amount of deposited material in discontinuous layers and a decrease of the thickness at which a continuous layer is formed, though at the expense of a larger electrical resistivity. Based on ex situ microstructural analyses, we conclude that 2D morphological evolution under the presence of alloying species is predominantly caused by a decrease of the rate of island coalescence completion during the initial film-formation stages. Guided by this realization, alloying species are released with high temporal precision to selectively target growth stages before and after coalescence completion. Pre-coalescence deployment of all alloying agents yields a more pronounced 2D growth morphology, which for the case of Cu, Al, and Au is achieved without compromising the Ag-layer electrical conductivity. A more complex behavior is observed when alloying atoms are deposited during the post-coalescence growth stages: Cu, Au, Al, and Cr favor 2D morphology, while Ti and Mo yield a more pronounced three-dimensional morphological evolution. The overall results presented herein show that targeted deployment of alloying agents constitutes a generic platform for designing bespoken heterostructures between metal layers and technologically relevant weakly interacting substrates.& nbsp;Published under an exclusive license by the AVS.
  •  
104.
  • Jin, P., et al. (author)
  • Low temperature deposition of a-Al2O3 thin films by sputtering using a Cr2O3 template
  • 2002
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 20:6, s. 2134-2136
  • Journal article (peer-reviewed)abstract
    • A description about low temperature deposition of a-Al2O3 thin films by sputtering was presented. Cr2O3 thin layer was used as a template. Nanoindentation was used to study the mechanical properties of the deposited films. Calculations were made to obtain the hardness and Young's modulus of the films.
  •  
105.
  • Johansson, Leif I, et al. (author)
  • Li induced effects in the core level and pi-band electronic structure of graphene grown on C-face SiC
  • 2015
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 33:6
  • Journal article (peer-reviewed)abstract
    • Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10(14) cm(-2) after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 degrees C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 degrees C, Li can no longer be detected on the sample. The single pi-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 degrees C, the p-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 degrees C look very similar to earlier calculated distribution patterns for monolayer graphene. (C) 2015 Author(s).
  •  
106.
  • Johansson, M P, et al. (author)
  • Low-temperature deposition of cubic BN : C films by unbalanced direct current magnetron sputtering of a B4C target
  • 1996
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 14:6, s. 3100-3107
  • Journal article (peer-reviewed)abstract
    • Controllable-unbalanced de magnetron sputtering of a B4C target in mixed Ar-N-2 discharges has been used to deposit BN:C thin films with carbon concentrations in the range of 5-21 at, % on Si(001) substrates. The variation of the nitrogen gas consumption with nitrogen partial pressure was used to determine the sorption capacity of the sputtering source and was then correlated to the film discharge plasma density near the substrate in a wide range. Hence, the ion flux J(i) of primary Ar+ and N-2(+) ions accelerated to the substrate by an applied negative substrate bias could be varied while keeping the deposition flux J(n) (the sum of film building species, B, C, and N atoms) near constant. BN:C films were grown at large ion-to-neutral flux ratios 3 less than or equal to J(i)/J(n) less than or equal to 24, ion energies E(i) less than or equal to 500 eV, and substrate temperatures 150 less than or equal to T-s less than or equal to 350 degrees C. The phase and elemental composition of as-deposited BN:C films were characterized by Fourier transform infrared spectroscopy and wavelength dispersive x-ray spectroscopy, respectively. Deposition of cubic phase c-BN:C containing 5-7 at. % of C is demonstrated under conditions of low energy (110 eV) ion bombardment, a high ion-to-atom arrival rate ration (J(i)/J(n) similar to 24), and low growth temperatures (similar to 150 degrees C). (C) 1996 American Vacuum Society.
  •  
107.
  •  
108.
  •  
109.
  • Junaid, Muhammad, et al. (author)
  • Structural, mechanical, and magnetic properties of GaFe3N thin films
  • 2016
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 34:4
  • Journal article (peer-reviewed)abstract
    • Using the density-functional theory, the structural, mechanical, and magnetic properties were investigated for different GaFe3N configurations: ferromagnetic, ferrimagnetic, paramagnetic, and nonmagnetic. Ferrimagnetic and high-spin ferromagnetic states exhibit the lowest energy and are the competing ground states as the total energy difference is 0.3 meV/atom only. All theoretically predicted values could be fully confirmed by experiments. For this, the authors synthesized phase pure, homogeneous, and continuous GaFe3N films by combinatorial reactive direct current magnetron sputtering. Despite the low melting point of gallium, the authors succeeded in the growth of GaFe3N films at a temperature of 500 degrees C. Those thin films exhibit a lattice parameter of 3.794 angstrom and an elastic modulus of 226620 GPa. Magnetic susceptibility measurements evidence a magnetic phase transitions at 8.060.1 K. The nearly saturated magnetic moment at 65 T is about 1.6 mu B/Fe and is close to the theoretically determined magnetic moment for a ferrimagnetic ordering (1.72 lB/Fe).
  •  
110.
  • Karslloǧlu, Osman, et al. (author)
  • Prospects for the expansion of standing wave ambient pressure photoemission spectroscopy to reactions at elevated temperatures
  • 2022
  • In: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 40:1
  • Journal article (peer-reviewed)abstract
    • Standing wave ambient pressure photoemission spectroscopy (SWAPPS) is a promising method to investigate chemical and potential gradients across solid-vapor and solid-liquid interfaces under close-to-realistic environmental conditions, far away from high vacuum. Until now, these investigations have been performed only near room temperature, but for a wide range of interfacial processes, chief among them being heterogeneous catalysis, measurements at elevated temperatures are required. One concern in these investigations is the temperature stability of the multilayer mirrors, which generate the standing wave field. At elevated temperatures, degradation of the multilayer mirror due to, for example, interdiffusion between the adjacent layers, decreases the modulation of the standing wave field, thus rendering SWAPPS experiments much harder to perform. Here, we show that multilayer mirrors consisting of alternate B4C and W layers are stable at temperatures exceeding 600 °C and are, thus, promising candidates for future studies of surface and subsurface species in heterogeneous catalytic reactions using SWAPPS.
  •  
111.
  •  
112.
  • Kateb, Movaffaq, et al. (author)
  • Effect of substrate bias on microstructure of epitaxial film grown by HiPIMS : An atomistic simulation
  • 2020
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 38:4
  • Journal article (peer-reviewed)abstract
    • The authors explore the combination of high power impulse magnetron sputtering (HiPIMS) and substrate bias for the epitaxial growth of the Cu film on the Cu (111) substrate by molecular dynamics simulation. A fully ionized deposition flux was used to represent the high ionization fraction in the HiPIMS process. To mimic different substrate bias, the authors assumed the deposition flux with a flat energy distribution in the low, moderate, and high energy ranges. The authors also compared the results of the fully ionized flux with results assuming a completely neutral flux, in analogy with thermal evaporation. It is confirmed that in the low energy regime, HiPIMS presents a slightly smoother surface and more interface mixing compared to that of thermal evaporation. In the moderate energy HiPIMS, however, an atomically smooth surface was obtained with a slight increase in the interface mixing compared to low energy HiPIMS. In the high energy regime, HiPIMS presents severe interface mixing with a smooth surface but limited growth due to resputtering from the surface. The results also indicate that fewer crystal defects appear in the film for moderate energy HiPIMS. The authors attribute this behavior to the repetition frequency of collision events. In particular, the high energy HiPIMS suffers from high repetition of collision events that does not allow the reconstruction of the film. While in the low energy HiPIMS, there are not enough events to overcome the island growth. At moderate energy, collision events repeat in a manner that provides enough time for reconstruction, which results in a smooth surface, fewer defects, and limited intermixing.
  •  
113.
  • Kateb, Movaffaq, et al. (author)
  • Role of ionization fraction on the surface roughness, density, and interface mixing of the films deposited by thermal evaporation, dc magnetron sputtering, and HiPIMS : An atomistic simulation
  • 2019
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : AVS Science and Technology Society. - 0734-2101 .- 1520-8559. ; 37:3
  • Journal article (peer-reviewed)abstract
    • The effect of ionization fraction on the epitaxial growth of Cu film on Cu (111) substrate at room temperature is explored. Three deposition methods, thermal evaporation, dc magnetron sputtering (dcMS), and high power impulse magnetron sputtering (HiPIMS) are compared. Three deposition conditions, i.e., fully neutral, 50% ionized, and 100% ionized flux were considered thermal evaporation, dcMS, and HiPIMS, respectively, for similar to 20 000 adatoms. It is shown that higher ionization fraction of the deposition flux leads to smoother surfaces by two major mechanisms, i.e., decreasing clustering in the vapor phase and bicollision of high energy ions at the film surface. The bicollision event consists of local amorphization which fills the gaps between islands followed by crystallization due to secondary collisions. The bicollision events are found to be very important to prevent island growth to become dominant and increase the surface roughness. Regardless of the deposition method, epitaxial Cu thin films suffer from stacking fault areas (twin boundaries) in agreement with recent experimental results. Thermal evaporation and dcMS deposition present negligible interface mixing while HiPIMS deposition presents considerable interface mixing. Published by the AVS.
  •  
114.
  • Kauppinen, Christoffer, et al. (author)
  • Atomic layer etching of gallium nitride (0001)
  • 2017
  • In: Journal of Vacuum Science and Technology A. - : American Vacuum Society. - 0734-2101. ; 35:6
  • Journal article (peer-reviewed)abstract
    • In this work, atomic layer etching (ALE) of thin film Ga-polar GaN(0001) is reported in detail using sequential surface modification by Cl2 adsorption and removal of the modified surface layer by low energy Ar plasma exposure in a standard reactive ion etching system. The feasibility and reproducibility of the process are demonstrated by patterning GaN(0001) films by the ALE process using photoresist as an etch mask. The demonstrated ALE is deemed to be useful for the fabrication of nanoscale structures and high electron mobility transistors and expected to be adoptable for ALE of other materials.
  •  
115.
  • Kim, Y. M., et al. (author)
  • Retention of neon in graphite after ion beam implantation or exposures to the scrape-off layer plasma in the TEXTOR tokamak
  • 2002
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 20:1, s. 138-145
  • Journal article (peer-reviewed)abstract
    • The interaction of neon ions with graphite was investigated for targets either irradiated with ion beams (2-10 keV range) or exposed to the scrape-off layer plasma in the TEXTOR tokamak during discharges with neon edge cooling. The emphasis was on the influence of the target temperature (300-1200 K) and the implantation dose on the neon retention and reemission. The influence of deuterium impact on the retention of neon implanted into graphite has also been addressed. In ion beam experiments saturation is observed above a certain ion dose with a saturation level, which decreases with increasing target temperature. The temperature dependence of the thermal desorption cot-responds to an apparent binding energy of about 2.06 eV. The retention of neon (C-Ne/C-C) decreases with increasing ion energy with values from 0.55 to 0.15 following irradiation with 2 and 10 keV ions, respectively. The reemission yield during the irradiation increases with target temperature and above 1200 K all impinging ions are reemitted instantaneously. The retention densities measured using the sniffer probe at the TEXTOR tokamak are less than 1% of the total neon fluence and are over one order of magnitude smaller than those observed in ion beam experiments. The results are discussed in terms of different process decisive for ion deposition and release under the two experimental conditions.
  •  
116.
  • Kindlund, Hanna, et al. (author)
  • Effect of WN content on toughness enhancement in V1–xWxN/MgO(001) thin films
  • 2014
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - Linköping : Linköping University Electronic Press. - 0734-2101 .- 1520-8559. ; 32:3, s. 030603-
  • Journal article (peer-reviewed)abstract
    • The authors report the growth and mechanical properties of epitaxial B1 NaCl-structure V1-xWxN/MgO(001) thin films with 0 ≤ x ≤ 0.60. The Gibbs free energy of mixing, calculated using density functional theory (DFT), reveals that cubic V1-xWxN solid solutions with 0 ≤ x ≤ 0.7 are stable against spinodal decomposition and separation into the equilibrium cubic-VN and hexagonal-WN binary phases. The authors show experimentally that alloying VN with WN leads to a monotonic increase in relaxed lattice parameters, enhanced nanoindentation hardnesses, and reduced elastic moduli. Calculated V1-xWxN lattice parameters and elastic moduli  (obtained from calculated C11, C12, and C44 elastic constants) are in good agreement with experimental results. The observed increase in alloy hardness, with a corresponding decrease in the elastic modulus at higher x values, combined with DFT-calculated decreases in shear to bulk moduli ratios, and increased Cauchy pressures (C12–C44) with increasing x reveal a trend toward increased toughness.
  •  
117.
  • Kindlund, Hanna, et al. (author)
  • Epitaxial V0.6W0.4N/MgO(001): Evidence for ordering on the cation sublattice
  • 2013
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 31:4
  • Journal article (peer-reviewed)abstract
    • V0.6W0.4N alloys are grown on MgO(001) by ultrahigh vacuum reactive magnetron sputtering from V and W targets in 10 mTorr pure-N-2 atmospheres at temperatures T-s ranging from 600 to 900 degrees C. Based on x-ray diffraction and transmission electron microscopy results, all films have the B1-NaCl crystal structure and grow with a cube-on-cube epitaxial relationship to the substrate, (001)(VWN)parallel to(001)(MgO) and [100](VWN parallel to)[100](MgO). Rutherford backscattering spectrometry analyses show that the N content in V0.6W0.4Nx alloys decreases with increasing T-s from overstoichiometric with x = 1.13 at 600 degrees C, to approximately stoichiometric with x = 1.08 at 700 degrees C, to understoichiometric at 800 degrees C (x = 0.80) and 900 degrees C (x = 0.75). High-resolution scanning transmission electron microscopy, Z-contrast, and selected-area electron diffraction investigations of V0.6W0.4N(001) alloys grown at 600 and 700 degrees C reveal the onset of W ordering on adjacent 111 planes of the metal sublattice; no ordering is observed for understoichiometric films grown at higher temperatures.
  •  
118.
  • Kindlund, Hanna, et al. (author)
  • Growth and mechanical properties of 111-oriented V0.5Mo0.5Nx/Al2O3(0001) thin films
  • 2018
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 36:5
  • Journal article (peer-reviewed)abstract
    • Pseudobinary V0.5Mo0.5Nx(111) alloys with the Bl-NaCl crystal structure are grown on Al2O3(0001) substrates in an ultra-high-vacuum system by reactive magnetron sputter deposition in mixed Ar/N-2 atmospheres at temperatures T-s between 100 and 900 degrees C. Nitrogen-to-metal, N/(V + Mo), fractions x vary monotonically from 0.9 +/- 0.1 with T-s = 100 degrees C to 0.4 +/- 0.1 at T-s = 900 degrees C. Nitrogen loss at higher growth temperatures leads to a corresponding decrease in the relaxed lattice parameter a(o) from 4.21 +/- 0.01 angstrom at T-s = 300 degrees C to 4.125 +/- 0.005 angstrom with T-s = 900 degrees C. Scanning electron micrographs of cube-corner nanoindents extending into the substrate show that the films are relatively ductile, exhibiting material pile-up (plastic flow) around the indent edges. Nanoindentation hardnesses H and elastic moduli E, obtained using a calibrated Berkovich tip, of V0.5Mo0.5Nx(111) layers increase with increasing T-s(decreasing x) from 15 +/- 1 and 198 +/- 5 GPa at 100 degrees C to 23 +/- 2 and 381 +/- 11 GPa at 900 degrees C. These values are lower than the corresponding results obtained for the 001-oriented V0.5Mo0.5Nx films In addition, film wear resistance increases with increasing T-s, while the coefficient of friction, under 1000 mu N loads, is 0.09 +/- 0.01 for all layers. Published by the AVS.
  •  
119.
  • Kollmus, H., et al. (author)
  • Energy scaling of the ion-induced desorption yield for perpendicular collisions of Ar and U with stainless steel in the energy range of 5 and 100 MeV/u
  • 2009
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 27:2, s. 245-247
  • Journal article (peer-reviewed)abstract
    • For the GSI future project Facility for Antiproton and Ion Research a beam intensity of 10(12)U(28+)ions/s is planned to be extracted from the GSI heavy ion synchrotron SIS18. Measurements performed in 2001 showed that the beam lifetime of the ions in the synchrotron is decreasing with increasing number of injected particles due to vacuum instabilities caused by ion-induced desorption. The injection energy for the SIS18 is about 10 MeV/u and U28+ ions are accelerated to 200 MeV/u limited by the magnetic rigidity for the low charge state. The aim of this work was to measure the desorption yield as a function of the impact energy from injection to extraction of SIS18 at GSI. Low energy yields at 5.0, 9.7, and 17.7 MeV/u were measured at the Cyclotron of The Svedberg Laboratory in Uppsala. High energy yields at 40, 80, and 100 MeV/u were measured at SIS18 of GSI in a different setup. It was found that the desorption yield scales with the electronic energy loss (dE/dx)(el)(n), with n between 2 and 3, decreasing for increasing impact energy above the Bragg maximum.
  •  
120.
  •  
121.
  • Kubart, Tomas, et al. (author)
  • Experiments and Modelling of Dual Reactive Magnetron Sputtering Using Two Reactive Gases
  • 2008
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 26:4, s. 565-570
  • Journal article (peer-reviewed)abstract
    • Reactive sputtering from two elemental targets, aluminium and zirconium, with the addition of two reactive gases, oxygen and nitrogen, is studied experimentally as well as theoretically. The complex behaviour of this process is observed and explained. It is shown that the addition of oxygen to a constant supply of nitrogen, significantly changes the relative content of aluminium with respect to zirconium in the film. Moreover, it is concluded that there is substantially more oxygen than nitrogen in the films even when the oxygen supply is significantly lower than the nitrogen supply. It is further shown that the addition of a certain minimum constant flow of nitrogen reduces, and eventually eliminates, the hysteresis with respect to the oxygen supply. It is concluded that the presented theoretical model for the involved reactions and mass balance during reactive sputtering of two targets in two reactive gases is in qualitative agreement with the experimental results and can be used to find optimum processing conditions for deposition of films of a desired composition.
  •  
122.
  • Kubart, Tomas, 1977-, et al. (author)
  • High power impulse magnetron sputtering of diamond-like carbon coatings
  • 2020
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 38:4
  • Journal article (peer-reviewed)abstract
    • High power impulse magnetron sputtering (HiPIMS) of diamond-like carbon coatings is reviewed. Three variations of HiPIMS were used to deposit diamond-like carbon coatings: use of neon as compared to argon for sputtering, very high discharge peak current density in an Ar atmosphere, and the use of bursts of short sputtering pulses. All three variations were able to provide sufficient ion-to-neutral ratios to effectively control the coating quality using substrate bias. The resulting coatings are typically smooth, amorphous, hard (up to 25 GPa), and dense but have low stress (below 2.5 GPa). The coatings exhibit an increased stability at higher temperature (up to 500 °C) compared to the coatings prepared using standard magnetron sputtering. The resulting coatings also exhibited low wear rates in ambient ball-on-disc tests (2.1 × 10−8 mm3 N−1 m−1). These improvements are explained in terms of the rate of sputtered carbon atom ionization in the plasma and material transport to the substrate. However, the chemical bonding in the films is not yet well understood as relatively low sp3 bond content has been observed.
  •  
123.
  • Kurapov, D., et al. (author)
  • Influence of the normalized ion flux on the constitution of alumina films deposited by plasma-assisted chemical vapor deposition
  • 2007
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 25:4, s. 831-836
  • Journal article (peer-reviewed)abstract
    • Alumina thin films were deposited onto tempered hot working steel substrates from an Al Cl3 - O2 -Ar- H2 gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. These changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion. © 2007 American Vacuum Society.
  •  
124.
  • Landälv, Ludvig, 1982-, et al. (author)
  • Influence of Si doping and O-2 flow on arc-deposited (Al,Cr)(2)O-3 coatings
  • 2019
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 37:6
  • Journal article (peer-reviewed)abstract
    • (Al,Cr)(2)O-3 coatings with Al/( Al + Cr) = 0.5 or Al = 70 at. %, doped with 0, 5, or 10 at. % Si, were deposited on hard metal and Si(100) substrates to elucidate the influence of Si on the resulting coatings. The chemical analysis of the coatings showed between 3.3 and 7.4 at. % metal fraction Si incorporated into all studied coatings depending on cathode Si composition. The incorporated Si content does not change significantly with different oxygen flows covering a wide range of deposition conditions from low to high O-2 flow during growth. The addition of Si promotes the metastable B1-like cubic structure over the thermodynamically stable corundum structure. The hardness determined by nanoindentation of the as-deposited coatings is slightly reduced upon Si incorporation as well as upon increased Al content. Si is found enriched in droplets but can also be found at a lower content, evenly spread, without visible segregation at the similar to 5 nm scale, in the actual oxide coating. The positive effect of improved cathode erosion upon Si incorporation has to be balanced against the promotion of the metastable B1-like structure, having lower room temperature hardness and inferior thermal stability compared to the corundum structure. Published by the AVS.
  •  
125.
  • LARSSON, CUS, et al. (author)
  • CORE-LEVEL SHIFTS ON THE H2O EXPOSED GE(100)2X1 SURFACE
  • 1989
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 7:3, s. 2044-2048
  • Journal article (peer-reviewed)
  •  
126.
  • Larsson, Fredrik, et al. (author)
  • Atomic layer deposition of amorphous tin-gallium oxide films
  • 2019
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 37:3
  • Journal article (peer-reviewed)abstract
    • A wide range of applications benefit from transparent semiconducting oxides with tunable electronic properties, for example, electron transport layers in solar cell devices, where the electron affinity is a key parameter. Presently, a few different ternary oxides are used for this purpose, but the attainable electron affinity range is typically limited. In this study, the authors develop a low-temperature atomic layer deposition (ALD) process to grow amorphous Sn1-xGaxOy thin films from dimethylamino-metal complexes and water. This oxide is predicted to provide a wide selection of possible electron affinity values, from around 3 eV for pure Ga2O3 to 4.5 eV for pure SnO2. The ALD process is evaluated for deposition temperatures in the range of 105-195 degrees C by in situ quartz crystal microbalance and with ex situ film characterization. The growth exhibits an ideal-like behavior at 175 degrees C, where the film composition can be predicted by a simple rule of mixture. Depending on film composition, the growth per cycle varies in the range of 0.6-0.8 angstrom at this temperature. Furthermore, the film composition for a given process appears insensitive to the deposition temperature. From material characterization, it is shown that the deposited films are highly resistive, fully amorphous, and homogeneous, with moderate levels of impurities (carbon, nitrogen, and hydrogen). By tailoring the metal cation ratio in films grown at 175 degrees C, the optical bandgap can be varied in the range from 2.7 eV for SnO2 to above 4.2 eV for Ga2O3. The bandgap also varies significantly as a function of deposition temperature. This control of properties indicates that Sn1-xGaxOy is a promising candidate for an electron transport layer material in a wide electron affinity range. Published by the AVS.
  •  
127.
  •  
128.
  • Le Febvrier, Arnaud, et al. (author)
  • Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy
  • 2017
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 35:2
  • Journal article (peer-reviewed)abstract
    • The effect of the wet-cleaning process using solvents and detergent on the surface chemistry of MgO(001) substrate for film deposition was investigated. Six different wet-cleaning processes using solvent and detergent were compared. The effect on film growth was studied by the example system ScN. The surface chemistry of the cleaned surface was studied by x-ray photoelectron spectroscopy and the film/substrate interface after film growth was investigated by time-of-flight secondary ion mass spectroscopy. The surface composition is dependent on the wet-cleaning process. Sonication in a detergent before the solvents yield a pure oxide surface compared to hydroxide/carbonate contaminated surface for all the other processes. An annealing step is efficient for the removal of carbon contamination as well as most of the hydroxide or carbonates. The study of the film/substrate interface revealed that the wet-cleaning process significantly affects the final interface and film quality. The substrate cleaned with detergent followed by solvent cleaning exhibited the cleanest surface of the substrate before annealing, after annealing, in addition to the sharpest film/substrate interface. (C) 2017 American Vacuum Society.
  •  
129.
  • Lee, Wei Chuang, et al. (author)
  • Monolayer calibration of endofullerenes with x-ray absorption from implanted keV ion doses
  • 2024
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 42:2
  • Journal article (peer-reviewed)abstract
    • X-ray absorption spectroscopy (XAS) has the highest sensitivity for chemical element detection on surfaces. With this approach, small amounts of lanthanide-containing endofullerene molecules (Ho3N@C80) have been measured by total electron yield at a low flux bending magnet beamline. The monolayer coverage is calibrated by extrapolating the signals of constant doses (3 x 1014 cm-2) of Ho ions implanted into SiO2 with energies between 2 and 115 keV. At room temperature, the Ho XAS spectra of the molecules and implanted ions indicate trivalent but not identical Ho ground states. Still, this approach demonstrates a way for calibration of small coverages of molecules containing open core-shell elements.
  •  
130.
  • Li, Xiao, et al. (author)
  • Determining role of W+ ions in the densification of TiAlWN thin films grown by hybrid HiPIMS/DCMS technique with no external heating
  • 2023
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 41:1
  • Journal article (peer-reviewed)abstract
    • Hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) with substrate bias synchronized to the high mass metal-ion fluxes was previously proposed as a solution to reduce energy consumption during physical vapor deposition processing and enable coatings on temperature-sensitive substrates. In this approach, no substrate heating is used (substrate temperature is lower than 150 C-o) and the thermally activated adatom mobility, necessary to grow dense films, is substituted by overlapping collision cascades induced by heavy ion bombardment and consisting predominantly of low-energy recoils. Here, we present direct evidence for the crucial role of W+ ion irradiation in the densification of Ti0.31Al0.60W0.09N films grown by the hybrid W-HiPIMS/TiAl-DCMS co-sputtering. The peak target current density J(max) on the W target is varied from 0.06 to 0.78 A/cm(2) resulting in more than fivefold increase in the number of W+ ions per deposited metal atom, eta = W+/(W + Al + Ti) determined by time-resolved ion mass spectrometry analyses performed at the substrate plane under conditions identical to those during film growth. The DCMS is adjusted appropriately to maintain the W content in the films constant at Ti0.31Al0.60W0.09N. The degree of porosity, assessed qualitatively from cross-sectional SEM images and quantitatively from oxygen concentration profiles as well as nanoindentation hardness, is a strong function of eta ( J m a x ). Layers grown with low eta values are porous and soft, while those deposited under conditions of high eta are dense and hard. Nanoindentation hardness of Ti0.31Al0.60W0.09N films with the highest density is & SIM;33 GPa, which is very similar to values reported for layers deposited at much higher temperatures (420-500 C-o) by conventional metal-ion-based techniques. These results prove that the hybrid HiPIMS/DCMS co-sputtering with bias pulses synchronized to high mass metal ion irradiation can be successfully used to replace conventional solutions. The large energy losses associated with heating of the entire vacuum chamber are avoided, by focusing the energy input to where it is in fact needed, i.e., the workpiece to be coated.
  •  
131.
  •  
132.
  • Lindahl, Erik, et al. (author)
  • In situ study of nickel formation during decomposition of chemical vapor deposition Ni3N films
  • 2010
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 28:5, s. 1203-1209
  • Journal article (peer-reviewed)abstract
    • The thermal decomposition of Ni3N thin films, deposited by chemical vapor deposition on SrTiO3 (001) and Si (100) substrates, has been studied by in situ x-ray diffraction, as well as temperature-programed controlled gas emission in both inert and hydrogen atmospheres. The decomposition at inert atmosphere conditions starts at the film/substrate interface, which results in a high degree of ordering in the formed nickel film. In the H-2 atmosphere, the initial film ordering is less pronounced and the decomposition occurs from the film surface and downward. This means that by choosing the annealing atmosphere, inert or hydrogen, the formation of the Ni film can be localized to either the original nitride/substrate interface or to the surface of the nitride. The annealed films show a cube-on-cube growth with respect to the SrTiO3 (001) substrate. The film morphology after the annealing experiments resembles the one of the as-deposited films. The lowest resistivity value is measured for the films annealed in the H-2 atmosphere. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3478298]
  •  
133.
  • Lundin, Daniel, et al. (author)
  • Influence of pulse power amplitude on plasma properties and film deposition in high power pulsed plasma enhanced chemical vapor deposition
  • 2014
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 32:3
  • Journal article (peer-reviewed)abstract
    • The discharge characteristics in high power pulsed plasma enhanced chemical vapor deposition is studied with the aim to characterize the impact of high power pulses (HiPP). Using a power scheme of combined HiPP and direct current (DC) to ignite the plasma discharge, and adjusting the HiPP/DC time-averaged power ratio while keeping the total power constant, the effect of the high power pulses was isolated from the total power. By monitoring the discharge current along with the optical emission from the plasma, it is found that the amount of available ions increased with increasing HiPP/DC ratio, which indicates a higher plasma density. Using carbon films deposited from acetylene in an argon plasma as model system, a strong increase in deposition rate with higher HiPP/DC is observed. The increased deposition rate is ascribed to a more efficient plasma chemistry generated by the denser plasma.
  •  
134.
  • Macak, K., et al. (author)
  • Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge
  • 2000
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 18:4 II, s. 1533-1537
  • Journal article (peer-reviewed)abstract
    • A high power density pulsed plasma discharge for ionized sputter deposition is studied. The temporal evolution of the plasma ion composition in high power pulsed magnetron sputtering is investigated and shows that Ar ions dominated the beginning of the pulse. As time elapsed, metal ions are detected and finally dominated the ion composition.
  •  
135.
  • Magnus, Fridrik, et al. (author)
  • Current-voltage-time characteristics of the reactive Ar/O2 high power impulse magnetron sputtering discharge
  • 2012
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 30:5
  • Journal article (peer-reviewed)abstract
    • The discharge current–voltage–time waveforms are studied in the reactive Ar/O2 high power impulse magnetron sputtering discharge with a titanium target for 400 μs long pulses. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage and the current increases with decreasing frequency or voltage. The authors attribute this to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as an oxide forms on the target.
  •  
136.
  • Magnuson, Martin, 1965-, et al. (author)
  • Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target
  • 2019
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 37:2
  • Journal article (peer-reviewed)abstract
    • The authors investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 °C as well as the influence of the sputtering power at 850 °C for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an excess of carbon in all films, which is explained by differences in the angular distribution between C, Si, and Ti, where C scatters the least during sputtering. The oxygen content is 2.6 at. % in the film deposited at RT and decreases with increasing deposition temperature, showing that higher temperatures favor high purity films. Chemical bonding analysis by x-ray photoelectron spectroscopy shows C–Ti and Si–C bonding in the Ti3SiC2 films and Si–Si bonding in the Ti3SiC2 compound target. X-ray diffraction reveals that the phases Ti3SiC2, Ti4SiC3, and Ti7Si2C5 can be deposited from a Ti3SiC2 compound target at substrate temperatures above 850 °C and with the growth of TiC and the Nowotny phase Ti5Si3Cx at lower temperatures. High-resolution scanning transmission electron microscopy shows epitaxial growth of Ti3SiC2, Ti4SiC3, and Ti7Si2C5 on TiC at 970 °C. Four-point probe resistivity measurements give values in the range ∼120 to ∼450 μΩ cm and with the lowest values obtained for films containing Ti3SiC2, Ti4SiC3, and Ti7Si2C5.
  •  
137.
  • Malinovskis, Paulius, et al. (author)
  • Synthesis and characterization of MoB2-x thin films grown by nonreactive DC magnetron sputtering
  • 2016
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 34, s. 031511-1-031511-8
  • Journal article (peer-reviewed)abstract
    • DC magnetron sputtering was used to depositmolybdenumboridethin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB2−x (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB2structure (AlB2-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB2 phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.
  •  
138.
  • Marchack, Nathan, et al. (author)
  • In-situ etch rate study of HfxLayOz in Cl-2/BCl3 plasmas using the quartz crystal microbalance
  • 2015
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 33:3
  • Journal article (peer-reviewed)abstract
    • The etch rate of HfxLayOz films in Cl-2/BCl3 plasmas was measured in-situ in an inductively coupled plasma reactor using a quartz crystal microbalance and corroborated by cross-sectional SEM measurements. The etch rate depended on the ion energy as well as the plasma chemistry. In contrast to other Hf-based ternary oxides, the etch rate of HfxLayOz films was higher in Cl-2 than in BCl3. In the etching of Hf0.25La0.12O0.63, Hf appeared to be preferentially removed in Cl-2 plasmas, per surface compositional analysis by x-ray photoelectron spectroscopy and the detection of HfCl3 generation in mass spectroscopy. These findings were consistent with the higher etch rate of Hf0.25La0.12O0.63 than that of La2O3.
  •  
139.
  • Martin, Ryan M., et al. (author)
  • Plasma Etching of Hf-based High-k Thin Films. Part II, Ion Enhanced Surface Reaction Mechanisms
  • 2009
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 27:2, s. 217-223
  • Journal article (peer-reviewed)abstract
    • The mechanism for ion-enhanced chemical etching of hafnium aluminate thin films in Cl-2/BCl3 plasmas was investigated in this work, specifically how the film composition, ion energy, and plasma chemistry determine their etch rates. Several compositions of Hf1-xAlxOy thin films ranging from pure HfO2 to pure Al2O3 were etched in BCl3/Cl-2 plasmas and their etch rates were found to scale with E-ion in both Cl-2 and BCl3 plasmas. In Cl-2 plasmas, a transition point was observed around 50 eV, where the etch rate was significantly enhanced while the linear dependence toE(ion) was maintained, corresponding to a change in the removal of fully chlorinated to less chlorinated reaction products. In BCl3 plasma, deposition dominates at ion energies below 50 eV, while etching occurs above that energy with an etch rate of three to seven times that in Cl-2. The faster etch rate in BCl3 was attributed to a   change in the dominant ion from Cl-2+ in Cl-2 plasma to BCl2+ in BCl3, which facilitated the formation of more volatile etch products and their removal. The surface chlorination (0-3 at. %) was enhanced with increasing ion energy while the amount of boron on the surface   increases with decreasing ion energy, highlighting the effect of different plasma chemistries on the etch rates, etch product formation, and surface termination.
  •  
140.
  •  
141.
  • Mattsson, Andreas, et al. (author)
  • Infrared spectroscopy study of adsorption and photodecomposition of formic acid on reduced and defective rutile TiO2 (110) surfaces
  • 2014
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 32:6
  • Journal article (peer-reviewed)abstract
    • Adsorption and photodecomposition of formic acid on rutile TiO2 (110) have been investigated with infrared reflection–absorption spectroscopy (IRRAS) employing p- and s-polarized light along the [001] and [ 11⎯⎯0 ] crystal directions. The single crystal surfaces were prepared either by sputtering and annealing in ultrahigh vacuum (UHV) to obtain a reduced surface (r-TiO2), or by sputtering without annealing to create a rough, highly defective surface (sp-TiO2). Results are compared with corresponding measurements on rutile nanocrystals performed in synthetic air. IRRAS spectra obtained on r-TiO2 and rutile nanocrystals are very similar, and show that in both cases formic acid dissociates and is predominately adsorbed as a bridging bidentate formate species, and that the formate adsorption structure on the nanocrystals is dominated by interactions with majority (110) surfaces. In contrast, the IRRAS spectra on sp-TiO2 are different, with only minor spectral features associated with (110) surfaces and lost azimuthal symmetry, both of which imply changed adsorption geometry due to bonding to low-coordinated Ti atoms with lower valences. The UV-induced rate of formate photodecomposition is about 30 times higher on rutile nanocrystals in synthetic air compared with sp-TiO2 under UHV conditions, and even larger than on r-TiO2. These differences are explained by the lack of oxygen and limited hydroxyl coverage under UHV conditions. The difference in reactivity between the r-TiO2 and sp-TiO2 surfaces is attributed to a high concentration of strongly bonded bridging bidentate formate species on the (110) surface, which lowers its reactivity. The results point to a pressure gap where the availability of molecular oxygen and the hydroxyl concentration limit the photoreactivity in UHV leading to an almost 20-fold decrease of the formate degradation rate in UHV. In contrast, the structure represented by the single crystal (110) surface is shown to capture the essential structural properties, which dictates the formic acid adsorption and adsorption structure of rutile nanocrystals.
  •  
142.
  • Mei, A B, et al. (author)
  • Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering
  • 2013
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 31:6, s. 061516-
  • Journal article (peer-reviewed)abstract
    • Single-crystal ZrN films, 830 nm thick, are grown on MgO(001) at 450 degrees C by magnetically unbalanced reactive magnetron sputtering. The combination of high-resolution x-ray diffraction reciprocal lattice maps, high-resolution cross-sectional transmission electron microscopy, and selected-area electron diffraction shows that ZrN grows epitaxially on MgO(001) with a cube-on-cube orientational relationship, (001)(ZrN)parallel to(001)(MgO) and [100](ZrN)parallel to[100](MgO). The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm, in good agreement with reported results for bulk ZrN crystals. X-ray reflectivity results reveal that the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based on temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity rho(300K) of 12.0 mu Omega-cm, a temperature coefficient of resistivity between 100 and 300K of 5.6 x 10(-8) Omega-cm K-1, a residual resistivity rho(o) below 30K of 0.78 mu Omega-cm (corresponding to a residual resistivity ratio rho(300K)/rho(15K) = 15), and the layers exhibit a superconducting transition temperature of 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, xi(parallel to) = 18 nm and xi(perpendicular to) = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7 +/- 1.7 and 450 +/- 25 GPa.
  •  
143.
  • Mikula, Marian, et al. (author)
  • Experimental and computational studies on toughness enhancement in Ti-Al-Ta-N quaternaries
  • 2017
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 35:6
  • Journal article (peer-reviewed)abstract
    • Design of hard ceramic material coatings with enhanced toughness, which prevents crack formation/propagation leading to brittle failure during application, is a primary industrial requirement. In this work, experimental methods supported by ab initio density functional theory (DFT) calculations and electronic structure analyses are used to investigate the mechanical behavior of magnetron sputtered Ti-Al-Ta-N hard coatings. The as-deposited Ti1-x-yAlxTayN (y = 0-0.60) films exhibit a single phase cubic sodium chloride (B1) structure identified as TiAl(Ta)N solid solutions. While the hardness H of Ti0.46Al0.54N (32.5 +/- 2 GPa) is not significantly affected by alloying with TaN (H of the quaternary nitrides varies between 26 +/- 2 and 35 +/- 4 GPa), the elastic stiffness monotonically decreases from 442 to 354 GPa with increasing Ta contents, which indicates improved toughness in TiAlTaN. Consistent with the experimental findings, the DFT results show that Ta substitutions in TiAlN reduce the shear resistance due to the enhanced occupation of metal-metal bonding states while preserving strong metal-N bonds. The metal-N bonding character, however, is progressively modified from prevalently ionic (TiAlN) toward more covalent (TiAlTaN). (C) 2017 American Vacuum Society.
  •  
144.
  • Miniotas, A, et al. (author)
  • Large magnetoresistance effect in as-grown epitaxial LaxCa1-xMnO3 films prepared by a molecular beam epitaxy coevaporation technique
  • 1998
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 16:3, s. 1268-1271
  • Journal article (peer-reviewed)abstract
    • Thin films of LaxCa1-xMnO3 (0.64 less than or equal to x less than or equal to 0.68) have been grown by NO2-assisted molecular beam epitaxy on single crystal SrTiO3(100) and LaAlO3(100) substrates. As-grown films are found to be grown epitaxially, b-axis oriented on both SrTiO3 and LaAlO3 substrates, and exhibit a large magnetoresistance effect {[R(O)-R(H)]/R(H)X100} of about 1500% at 214 K. The magnetoresistance effect values obtained are similar to those reported for as-grown LaxCa1-xMnO3 (0.60 less than or equal to x less than or equal to 0.7) films synthesized either by so-called "block-by-block" or "layer-by-layer" molecular beam epitaxy techniques, but the effect appears at significantly higher temperatures. For epitaxial La0.68Ca0.32MnO3 films grown on SrTiO3 a relatively large resistance suppression of 200% at 1.0 T is observed. (C) 1998 American Vacuum Society.
  •  
145.
  • Montelius, Lars, et al. (author)
  • Fabrication and characterization of a nanosensor for admittance spectroscopy of biomolecules
  • 1995
  • In: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 13:3, s. 1755-1760
  • Journal article (peer-reviewed)abstract
    • We have fabricated nanometer-sized interdigitated electrode patterns using electron beam lithography and liftoff techniques. The aim of the investigation was to find out whether the dimensions (i.e., the electrode separations) of the pattern would affect the admittance signal of the biomolecules in between the electrodes. Since the admittance signal scales with the geometrical factor A/d, where A is the electrode area and d is the separation, we chose to keep A/d constant when changing the electrode separation in order to eliminate this trivial effect on the admittance signal. An interdigitated electrode structure having an interelectrode spacing in the nanometer regime makes it possible to reach high nonstationary as well as stationary electric field strengths while having a low applied voltage level. Hence, electrode reactions will be as small as possible, while a high signal to noise ratio is obtained. We have been able to experimentally study the response of the impedance behavior to high electric fields exhibiting either a positive or a negative shift of the permittivity as a function of the field being a high alternating-current or a direct-current field, respectively.
  •  
146.
  •  
147.
  • Moreira, Milena A., et al. (author)
  • Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering
  • 2015
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 33:2
  • Journal article (peer-reviewed)abstract
    • Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 degrees C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an x-scan full width at half maximum value of 5.1 degrees was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.
  •  
148.
  • Müller, Martina, et al. (author)
  • Hard x-ray photoelectron spectroscopy of tunable oxide interfaces
  • 2022
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 40:1
  • Journal article (peer-reviewed)abstract
    • The tunability of the oxygen content in complex oxides and heterostructures has emerged as a key to designing their physical functionalities. Controlling the interface reactivity by redox reactions provides a powerful means to deliberately set distinct oxide phases and emerging properties. We present routes on how to control oxygen-driven redox mechanisms in ultrathin ferro(i)magnetic and ferroelectric oxide films and across oxide interfaces. We address the growth and control of metastable EuO oxide phases, the control of phase transitions of binary Fe oxides by oxygen migration, the in operando determination of NiFe2O4/SrTiO3 interface band alignments, as well as the role of interfacial oxide exchange in ferroelectric HfO 2-based capacitors-uncovered by the unique capabilities of photoelectron spectroscopy and, in particular, using hard x-rays.
  •  
149.
  •  
150.
  • Music, Denis, et al. (author)
  • Role of carbon in boron suboxide thin films
  • 2003
  • In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 21:4, s. 1355-1358
  • Journal article (peer-reviewed)abstract
    • X-ray amorphous BO0.02 thin films with the C content from 0 to 0.6 at. % were grown by reactive dual magnetron sputtering in an UHV system. It was shown that the elastic and dielectric properties of the as-deposited films are affected by the amount of the incorporated C and the film density.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 101-150 of 243
Type of publication
journal article (238)
research review (4)
other publication (1)
Type of content
peer-reviewed (234)
other academic/artistic (9)
Author/Editor
Hultman, Lars (44)
Berg, Sören (36)
Blom, Hans-Olof (24)
Pedersen, Henrik (22)
Petrov, Ivan (21)
Greczynski, Grzegorz (19)
show more...
Högberg, Hans (16)
Greene, Joseph E (16)
Helmersson, Ulf (13)
Lundin, Daniel (13)
Jensen, Jens (12)
Nender, C (11)
Lu, Jun (10)
Rosén, Johanna (9)
Eklund, Per (9)
Primetzhofer, Daniel (8)
Odén, Magnus (8)
Gudmundsson, Jon Tom ... (8)
Östling, M (8)
Nyberg, Tomas (7)
Barankova, Hana (7)
Larsson, T (6)
Music, Denis (6)
Birch, Jens (6)
Broitman, Esteban (6)
Bakhit, Babak (6)
Zhang, Shi-Li (5)
Petrov, I. (5)
Hedlund, Christer, 1 ... (5)
Palisaitis, Justinas (5)
Le Febvrier, Arnaud (5)
Jonsson, Lars (5)
Brenning, Nils (5)
Norström, H (5)
Petersson, CS (5)
Greczynski, Grzegorz ... (5)
Bardos, Ladislav (5)
Ghafoor, Naureen (5)
Sarakinos, Kostas (4)
Karlsson, Ulf O. (4)
Katardjiev, Ilia (4)
Kubart, Tomas (4)
Kindlund, Hanna (4)
Sangiovanni, Davide (4)
Hultman, Lars, Profe ... (4)
Lindahl, Erik (4)
Raadu, Michael A. (4)
Nender, Claes (4)
Gelin, B (4)
Katardjiev, Ilia V (4)
show less...
University
Linköping University (126)
Uppsala University (90)
Royal Institute of Technology (23)
Lund University (13)
Mid Sweden University (5)
University West (4)
show more...
Chalmers University of Technology (4)
Luleå University of Technology (2)
Malmö University (2)
RISE (2)
Karlstad University (2)
University of Gothenburg (1)
Umeå University (1)
Stockholm University (1)
Örebro University (1)
show less...
Language
English (242)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (120)
Engineering and Technology (43)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view