SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0004 6280 OR L773:1538 3873 srt2:(2010-2014)"

Search: L773:0004 6280 OR L773:1538 3873 > (2010-2014)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boldt, Luis N., et al. (author)
  • Near-Infrared K Corrections of Type Ia Supernovae and their Errors
  • 2014
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 126:938, s. 324-337
  • Journal article (peer-reviewed)abstract
    • In this paper we use near-infrared (NIR) spectral observations of Type Ia supernovae (SNe Ia) to study the uncertainties inherent in NIR K corrections. To do so, 75 previously published NIR spectra of 33 SNe Ia are employed to determine K-correction uncertainties in the YJHK(s) passbands as a function of temporal phase and redshift. The resultant K corrections are then fed into an interpolation algorithm that provides mean K corrections as a function of temporal phase and robust estimates of the associated errors. These uncertainties are both statistical and intrinsic-i.e., due to the diversity of spectral features from object to object and must be included in the overall error budget of cosmological parameters constrained through the use of NIR observations of SNe Ia. Intrinsic variations are likely the dominant source of error for all four passbands at maximum light. Given the present data, the total Y-band K-correction uncertainties at maximum are smallest, amounting to +/- 0.04 mag at a redshift of z = 0.08. The J-band K-term errors are also reasonably small (+/- 0.06 mag), but intrinsic variations of spectral features and noise introduced by telluric corrections in the H-band currently limit its total K-correction errors at maximum to +/- 0.10 mag at z = 0.08. Finally, uncertainties in the K-s-band K terms at maximum amount to +/- 0.07 mag at this same redshift. These results are largely constrained by the small number of published NIR spectra of SNe Ia, which do not yet allow spectral templates to be constructed as a function of the light curve decline rate.
  •  
2.
  • Dent, W. R. F., et al. (author)
  • GASPS-A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
  • 2013
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 125:927, s. 477-505
  • Journal article (peer-reviewed)abstract
    • We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted similar to 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 mu m the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 mu m, [CII] at 157 mu m, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 mu m. Additionally, GASPS included continuum photometry at 70, 100 and 160 mu m, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 mu m was the brightest line seen in almost all objects, by a factor of similar to 10. Overall [OI]63 mu m detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 mu m detection of similar to 10(-5) M-circle dot. Normalising to a distance of 140 pc, 84% of objects with dust masses >= 10(-5) M-circle dot can be detected in this line in the present survey; 32% of those of mass 10(-6)-10(-5) M-circle dot, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were similar to 50%. For each association in the 5-20 Myr age range, similar to 2 stars remain detectable in [OI]63 mu m, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that similar to 18% of stars retain a gas-rich disk of total mass similar to 1 M-Jupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 mu m, [CII]157 mu m and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
  •  
3.
  • Kattner, ShiAnne, et al. (author)
  • The Standardizability of Type Ia Supernovae in the Near-Infrared : Evidence for a Peak-Luminosity Versus Decline-Rate Relation in the Near-Infrared
  • 2012
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 124:912, s. 114-127
  • Journal article (peer-reviewed)abstract
    • We analyze the standardizability of Type Ia supernovae (SNe Ia) in the near-infrared (NIR) by investigating the correlation between observed peak NIR (Y JH) absolute magnitude and postmaximum B-band decline rate [Delta m(15)(B)]. A sample of 27 low-redshift SNe Ia with well-observed NIR light curves observed by the Carnegie Supernova Project (CSP) between 2004 and 2007 is used. All 27 objects have premaximum coverage in optical bands, with a subset of 13 having premaximum NIR observations as well; coverage of the other 14 begins shortly after NIR maximum brightness. We describe the methods used to derive light-curve parameters (absolute peak magnitudes and decline rates) from both spline-and template-fitting procedures, and we confirm prior findings that fitting templates to SNe Ia light curves in the NIR is problematic due to the diversity of postmaximum behavior of objects that are characterized by similar Delta m(15)(B) values, especially at high decline rates. Nevertheless, we show that NIR light curves can be reasonably fit with a template, especially if the observations begin within 5 days after NIR maximum. SNe Ia appear to be better standardizable candles in the NIR bands than in the optical bands. For the subset of 13 objects in our data set that excludes the highly reddened and fast-declining SNe Ia and includes only those objects for which NIR observations began prior to 5 days after maximum light, we find modest (1.7 sigma) evidence for a peak-luminosity versus decline-rate relation in Y, and stronger evidence (2.8 sigma) in J and H. Using R-V values differing from the canonical value (R-V = 3.1) is shown to have little effect on the results. A Hubble diagram is presented for the NIR bands and the B band. The resulting scatter for the combined NIR bands is 0.13 mag, while the B band produces a scatter of 0.22 mag. Finally, we find evidence for a bimodal distribution in the NIR absolute magnitudes of fast-declining SNe Ia [Delta m(15)(B) > 1.7]. These data suggest that applying a correction to SNe Ia peak luminosities for decline rate is likely to be beneficial in the J and H bands to make SNe Ia more precise distance indicators, but of only marginal importance in the Y band.
  •  
4.
  • Kessler, Richard, et al. (author)
  • Results from the Supernova Photometric Classification Challenge
  • 2010
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 122:898, s. 1415-1431
  • Journal article (peer-reviewed)abstract
    • We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis.
  •  
5.
  • van Dishoeck, E. F., et al. (author)
  • Water in Star-forming Regions with the Herschel Space Observatory (WISH). I. Overview of Key Program and First Results
  • 2011
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 123:900, s. 138-170
  • Journal article (peer-reviewed)abstract
    • Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.
  •  
6.
  • Way, Michael J., et al. (author)
  • Can Self-Organizing Maps Accurately Predict Photometric Redshifts?
  • 2012
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 124:913, s. 274-279
  • Journal article (peer-reviewed)abstract
    • We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using Delta z = z(phot) - z(spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods.
  •  
7.
  • Wright, J. T., et al. (author)
  • The Exoplanet Orbit Database
  • 2011
  • In: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 123:902, s. 412-422
  • Journal article (peer-reviewed)abstract
    • We present a database of well-determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent con-elation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view