SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1743 8977 srt2:(2010-2014)"

Search: L773:1743 8977 > (2010-2014)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barath, Stefan, et al. (author)
  • Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions
  • 2010
  • In: Particle and Fibre Toxicology. - : BioMed Central. - 1743-8977. ; 7:1, s. 19-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions.OBJECTIVES: To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures.METHODS: In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 mug/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions.MEASUREMENTS AND MAIN RESULTS: Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05).CONCLUSION: Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds.
  •  
2.
  • Löndahl, Jakob, et al. (author)
  • Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease
  • 2012
  • In: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 9, s. 30-
  • Journal article (peer-reviewed)abstract
    • Background: Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease (COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for combustion particles. Objectives: To determine respiratory tract deposition of diesel combustion particles in patients with COPD during spontaneous breathing. Methods: Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the size range 10-500 nm during spontaneous breathing. Results: The deposited dose rate increased with increasing severity of the disease. However, the deposition probability of the ultrafine combustion particles (< 100 nm) was decreased in COPD patients. The deposition probability was associated with both breathing parameters and lung function, but could be predicted only based on lung function. Conclusions: The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the factors contributing to their increased vulnerability. The strong correlations between lung function and particle deposition, especially in the size range of 20-30 nm, suggest that altered particle deposition could be used as an indicator respiratory disease.
  •  
3.
  • Sehlstedt, Maria, 1979-, et al. (author)
  • Antioxidant airway responses following experimental exposure to wood smoke in man
  • 2010
  • In: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 7, s. 21-
  • Journal article (peer-reviewed)abstract
    • Background: Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 +/- 22 mu g/m(3), and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results: Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions: Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure.
  •  
4.
  •  
5.
  • Bølling, Anette Kocbach, et al. (author)
  • Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines.
  • 2012
  • In: Particle and fibre toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 9:1
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in northern countries during the winter season. The overall aim of this study was therefore to investigate the cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS: WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION: The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
  •  
6.
  • Gliga, Anda R., et al. (author)
  • Size-dependent cytotoxicity of silver nanoparticles in human lung cells : the role of cellular uptake, agglomeration and Ag release
  • 2014
  • In: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 11:1, s. 11-
  • Journal article (peer-reviewed)abstract
    • Background: Silver nanoparticles (AgNPs) are currently one of the most manufactured nanomaterials. A wide range of toxicity studies have been performed on various AgNPs, but these studies report a high variation in toxicity and often lack proper particle characterization. The aim of this study was to investigate size-and coating-dependent toxicity of thoroughly characterized AgNPs following exposure of human lung cells and to explore the mechanisms of toxicity. Methods: BEAS-2B cells were exposed to citrate coated AgNPs of different primary particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP coated and 50 nm uncoated AgNPs. The particle agglomeration in cell medium was investigated by photon cross correlation spectroscopy (PCCS); cell viability by LDH and Alamar Blue assay; ROS induction by DCFH-DA assay; genotoxicity by alkaline comet assay and gamma H(2)AX foci formation; uptake and intracellular localization by transmission electron microscopy (TEM); and cellular dose as well as Ag release by atomic absorption spectroscopy (AAS). Results: The results showed cytotoxicity only of the 10 nm particles independent of surface coating. In contrast, all AgNPs tested caused an increase in overall DNA damage after 24 h assessed by the comet assay, suggesting independent mechanisms for cytotoxicity and DNA damage. However, there was no gamma H(2)AX foci formation and no increased production of intracellular reactive oxygen species (ROS). The reasons for the higher toxicity of the 10 nm particles were explored by investigating particle agglomeration in cell medium, cellular uptake, intracellular localization and Ag release. Despite different agglomeration patterns, there was no evident difference in the uptake or intracellular localization of the citrate and PVP coated AgNPs. However, the 10 nm particles released significantly more Ag compared with all other AgNPs (approx. 24 wt% vs. 4-7 wt%) following 24 h in cell medium. The released fraction in cell medium did not induce any cytotoxicity, thus implying that intracellular Ag release was responsible for the toxicity. Conclusions: This study shows that small AgNPs (10 nm) are cytotoxic for human lung cells and that the toxicity observed is associated with the rate of intracellular Ag release, a 'Trojan horse' effect.
  •  
7.
  • Hedberg, Yolanda, et al. (author)
  • Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective
  • 2010
  • In: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 7:23
  • Journal article (peer-reviewed)abstract
    • BackgroundProduction of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549).ResultsThe amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure.ConclusionIt is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel.
  •  
8.
  • Riddervold, Ingunn Skogstad, et al. (author)
  • Effects of wood smoke particles from wood-burning stoves on the respiratory health of atopic humans.
  • 2012
  • In: Particle and fibre toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 9
  • Journal article (peer-reviewed)abstract
    • There is growing evidence that particulate air pollution derived from wood stoves causes acute inflammation in the respiratory system, increases the incidence of asthma and other allergic diseases, and increases respiratory morbidity and mortality. The objective of this study was to evaluate acute respiratory effects from short-term wood smoke exposure in humans. Twenty non-smoking atopic volunteers with normal lung function and without bronchial responsiveness were monitored during three different experimental exposure sessions, aiming at particle concentrations of about 200 μg/m(3), 400 μg/m(3), and clean air as control exposure. A balanced cross-over design was used and participants were randomly allocated to exposure orders. Particles were generated in a wood-burning facility and added to a full-scale climate chamber where the participants were exposed for 3 hours under controlled environmental conditions. Health effects were evaluated in relation to: peak expiratory flow (PEF), forced expiratory volume in the first second (FEV1), and forced vital capacity (FVC). Furthermore, the effects were assessed in relation to changes in nasal patency and from markers of airway inflammation: fractional exhaled nitric oxide (FENO), exhaled breath condensate (EBC) and nasal lavage (NAL) samples were collected before, and at various intervals after exposure.
  •  
9.
  • Unosson, Jon, et al. (author)
  • Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans
  • 2013
  • In: Particle and Fibre Toxicology. - London, England : Springer Science and Business Media LLC. - 1743-8977. ; 10, s. 20-
  • Journal article (peer-reviewed)abstract
    • Background: Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. Methods: Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314 +/- 38 mu g/m(3)) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. Results: Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. Conclusions: Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease.
  •  
10.
  • Hunter, Amanda, et al. (author)
  • Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters
  • 2014
  • In: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 11
  • Journal article (peer-reviewed)abstract
    • Background: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. Methods: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Results: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Conclusions: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.
  •  
11.
  • Karlsson, Hanna L., et al. (author)
  • Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines
  • 2014
  • In: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 11, s. 41-
  • Journal article (peer-reviewed)abstract
    • Background: The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide-and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). Methods: The metal oxide-and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, gamma-H(2)AX and RAD51 foci formation). Results: We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. Conclusions: We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11
Type of publication
journal article (11)
Type of content
peer-reviewed (11)
Author/Editor
Sandström, Thomas (5)
Westerholm, Roger (5)
Boman, Christoffer (5)
Blomberg, Anders (4)
Löndahl, Jakob (3)
Karlsson, Hanna L. (3)
show more...
Mills, Nicholas L. (3)
Langrish, Jeremy P (3)
Newby, David E (3)
Swietlicki, Erik (2)
Fadeel, Bengt (2)
Pourazar, Jamshid (2)
Nyström, Robin (2)
Odnevall Wallinder, ... (2)
Barath, Stefan (2)
Lucking, Andrew J (2)
Mudway, Ian S (2)
Bølling, Anette Kocb ... (1)
Sandström, Thomas, 1 ... (1)
Kåredal, Monica (1)
Rissler, Jenny (1)
Gudmundsson, Anders (1)
Massling, Andreas (1)
Boman, Johan, 1955 (1)
Sigsgaard, Torben (1)
Pagels, Joakim (1)
Blomberg, Anders, 19 ... (1)
Bergvall, Christoffe ... (1)
Albin, Maria (1)
Axmon, Anna (1)
Nielsen, Jörn (1)
Söderberg, Stefan (1)
Olin, Anna-Carin, 19 ... (1)
Wierzbicka, Aneta (1)
Barregård, Lars, 194 ... (1)
Sällsten, Gerd, 1952 (1)
Xu, YiYi (1)
Lundbäck, Magnus (1)
Bosson, Jenny A. (1)
Möller, Lennart (1)
Behndig, Annelie F. (1)
Cassee, Flemming (1)
Törnqvist, Håkan (1)
Donaldson, Ken (1)
Sadiktsis, Ioannis, ... (1)
Dahlman, Hans Jørgen (1)
Schwarze, Per E (1)
Bengtsson, Agneta (1)
Skoglund, Sara (1)
Hougaard, David (1)
show less...
University
Umeå University (6)
Stockholm University (5)
Lund University (4)
University of Gothenburg (3)
Royal Institute of Technology (3)
Karolinska Institutet (3)
Language
English (11)
Research subject (UKÄ/SCB)
Medical and Health Sciences (7)
Natural sciences (4)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view