SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aguilera Anabella) srt2:(2021)"

Search: WFRF:(Aguilera Anabella) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aguilera, Anabella, et al. (author)
  • C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria
  • 2021
  • In: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 221:2
  • Journal article (peer-reviewed)abstract
    • Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.
  •  
2.
  • Aguilera, Anabella, et al. (author)
  • Cell death in Cyanobacteria : current understanding and recommendations for a consensus on its nomenclature
  • 2021
  • In: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 12, s. 1-15
  • Research review (peer-reviewed)abstract
    • Cyanobacteria are globally widespread photosynthetic prokaryotes and are major contributors to global biogeochemical cycles. One of the most critical processes determining cyanobacterial eco-physiology is cellular death. Evidence supports the existence of controlled cellular demise in cyanobacteria, and various forms of cell death have been described as a response to biotic and abiotic stresses. However, cell death research in this phylogenetic group is a relatively young field and understanding of the underlying mechanisms and molecular machinery underpinning this fundamental process remains largely elusive. Furthermore, no systematic classification of modes of cell death has yet been established for cyanobacteria. In this work, we analyzed the state of knowledge in the field of cyanobacterial cell death. Based on that, we propose unified criterion for the definition of accidental, regulated, and programmed forms of cell death in cyanobacteria based on molecular, biochemical, and morphologic aspects following the directions of Nomenclature Committee on Cell Death (NCCD). With this, we aim to provide a guide to standardize the nomenclature related to this topic in a precise and consistent manner, which will facilitate further ecological, evolutionary and applied research in the field of cyanobacterial cell death
  •  
3.
  • Giannuzzi, Leda, et al. (author)
  • A Stochastic Characterization of Hydrogen Peroxide-Induced Regulated Cell Death in Microcystis aeruginosa
  • 2021
  • In: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 12
  • Journal article (peer-reviewed)abstract
    • Regulated cell death (RCD) encompasses the activation of cellular pathways that initiate and execute a self-dismissal process. RCD occur over a range of stressors doses that overcome pro-survival cellular pathways, while higher doses cause excessive damage leading to passive accidental cell death (ACD). Hydrogen peroxide (HP) has been proposed as a potential tool to control harmful cyanobacterial blooms, given its capacity to remove cyanobacterial cells and oxidize cyanotoxins. HP is a source of hydroxyl radicals and is expected to induce RCD only within a limited range of concentrations. This property makes this compound very useful to better understand stress-driven RCD. In this work, we analyzed cell death in microcystin-producing Microcystis aeruginosa by means of a stochastic dose response model using a wide range of HP concentrations (0, 0.29, 1.76, 3.67, 7.35, 14.70, and 29.5 mM). We used flow cytometry and unsupervised classification to study cell viability and characterize transitional cell death phenotypes after exposing cells to HP for 48 and 72 h. Non-linear regression was used to fit experimental data to a logistic cumulative distribution function (cdf) and calculate the half maximal effective concentration (EC50). The EC50 of M. aeruginosa exposed to HP were 3.77 +/- 0.26 mM and 4.26 +/- 0.22 mM at 48 and 72 h, respectively. The derivative of cdf (probability density function; pdf) provided theoretical and practical demonstration that EC50 is the minimal dose required to cause RCD in 50% of cells, therefore maximizing the probability of RCD occurrence. 1.76 mM HP lead to an antioxidant stress response characterized by increased reactive oxygen species (ROS) levels and HP decomposition activity. The exposure of 3.67 mM HP induced a dose-related transition in cell death phenotype, and produced several morphological changes (a less dense stroma, distortion of the cell membrane, partial disintegration of thylakoids, extensive cytoplasmic vacuolation and highly condensed chromatin). The EC50 and the stochastic cdf and pdf together with the multidimensional transitional phenotypic analysis of single cells contribute to further characterize cell death pathways in cyanobacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view