SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aguilera Anabella) srt2:(2023)"

Search: WFRF:(Aguilera Anabella) > (2023)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aguilera, Anabella, et al. (author)
  • Cyanobacterial bloom monitoring and assessment in Latin America
  • 2023
  • In: Harmful Algae. - : Elsevier. - 1568-9883 .- 1878-1470. ; 125
  • Journal article (peer-reviewed)abstract
    • Cyanobacterial blooms have serious adverse effects on human and environmental health. In Latin America, one of the main world's freshwater reserves, information on this phenomenon remains sparse. To assess the current situation, we gathered reports of cyanobacterial blooms and associated cyanotoxins in freshwater bodies from South America and the Caribbean (Latitude 22 degrees N to 45 degrees S) and compiled the regulation and monitoring procedures implemented in each country. As the operational definition of what is a cyanobacterial bloom remains controversial, we also analyzed the criteria used to determine the phenomena in the region. From 2000 to 2019, blooms were reported in 295 water bodies distributed in 14 countries, including shallow and deep lakes, reservoirs, and rivers. Cyanotoxins were found in nine countries and high concentrations of microcystins were reported in all types of water bodies. Blooms were defined according to different, and sometimes arbitrary criteria including qualitative (changes in water color, scum presence), quantitative (abundance), or both. We found 13 different cell abundance thresholds defining bloom events, from 2 x 10(3) to 1 x 10(7) cells mL(-1). The use of different criteria hampers the estimation of bloom occurrence, and consequently the associated risks and economic impacts. The large differences between countries in terms of number of studies, monitoring efforts, public access to the data and regulations regarding cyanobacteria and cyanotoxins highlights the need to rethink cyanobacterial bloom monitoring, seeking common criteria. General policies leading to solid frameworks based on defined criteria are needed to improve the assessment of cyanobacterial blooms in Latin America. This review represents a starting point toward common approaches for cyanobacterial monitoring and risk assessment, needed to improve regional environmental policies.
  •  
2.
  • Aguilera, Anabella, et al. (author)
  • Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria
  • 2023
  • In: Environmental Microbiology. - Chichester : John Wiley & Sons. - 1462-2912 .- 1462-2920. ; 25:9, s. 1674-1695
  • Journal article (peer-reviewed)abstract
    • Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcBandcpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10–30°C), light(10–190 μmol  photons  m-2s-1), and salinity (2–14  PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.
  •  
3.
  • Bonilla, Sylvia, et al. (author)
  • Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas
  • 2023
  • In: Harmful Algae. - : Elsevier. - 1568-9883 .- 1878-1470. ; 121
  • Journal article (peer-reviewed)abstract
    • Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water man-agement. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of tem-perature gradients, since local factors are more critical - and more amenable to controls - than global external forces.
  •  
4.
  • Churakova, Yelena, et al. (author)
  • Biogenic silica accumulation in picoeukaryotes : Novel players in the marine silica cycle
  • 2023
  • In: Environmental Microbiology Reports. - : John Wiley & Sons. - 1758-2229. ; 15:4, s. 282-290
  • Journal article (peer-reviewed)abstract
    • It is well known that the biological control of oceanic silica cycling is dominated by diatoms, with sponges and radiolarians playing additional roles. Recent studies have revealed that some smaller marine organisms (e.g. the picocyanobacterium Synechococcus) also take up silicic acid (dissolved silica, dSi) and accumulate silica, despite not exhibiting silicon dependent cellular structures. Here, we show biogenic silica (bSi) accumulation in five strains of picoeukaryotes (<2-3 mu m), including three novel isolates from the Baltic Sea, and two marine species (Ostreococcus tauri and Micromonas commoda), in cultures grown with added dSi (100 mu M). Average bSi accumulation in these novel biosilicifiers was between 30 and 92 amol Si cell(-1). Growth rate and cell size of the picoeukaryotes were not affected by dSi addition. Still, the purpose of bSi accumulation in these smaller eukaryotic organisms lacking silicon dependent structures remains unclear. In line with the increasing recognition of picoeukaryotes in biogeochemical cycling, our findings suggest that they can also play a significant role in silica cycling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view