SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Amon R. M. W.) "

Search: WFRF:(Amon R. M. W.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Charette, M. A., et al. (author)
  • The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • In: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 125:5
  • Journal article (peer-reviewed)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and similar to 25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 +/- 0.4 Sv (10(6) m(3)s(-1)). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Plain Language Summary A major feature of the Arctic Ocean circulation is the Transpolar Drift (TPD), a surface current that carries ice and continental shelf-derived materials from Siberia across the North Pole to the North Atlantic Ocean. In 2015, an international team of oceanographers conducted a survey of trace elements in the Arctic Ocean, traversing the TPD. Near the North Pole, they observed much higher concentrations of trace elements in surface waters than in regions on either side of the current. These trace elements originated from land, and their journey across the Arctic Ocean is made possible by chemical reactions with dissolved organic matter that originates mainly in Arctic rivers. This study reveals the importance of rivers and shelf processes combined with strong ocean currents in supplying trace elements to the central Arctic Ocean and onward to the Atlantic. These trace element inputs are expected to increase as a result of permafrost thawing and increased river runoff in the Arctic, which is warming at a rate much faster than anywhere else on Earth. Since many of the trace elements are essential building blocks for ocean life, these processes could lead to significant changes in the marine ecosystems and fisheries of the Arctic Ocean.
  •  
3.
  • Charette, M, et al. (author)
  • The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • In: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 125, s. 1-34
  • Journal article (peer-reviewed)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the openocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv(106m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologicc ycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
  •  
4.
  • Sumaila, U. Rashid, et al. (author)
  • WTO must ban harmful fisheries subsidies
  • 2021
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6567, s. 544-544
  • Journal article (other academic/artistic)
  •  
5.
  • Abbott, Benjamin W., et al. (author)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Journal article (peer-reviewed)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
6.
  • Ashley, S. F., et al. (author)
  • Intrinsic state lifetimes in Pd-103 and Cd-106,Cd-107
  • 2007
  • In: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 76:6, s. 064302-
  • Journal article (peer-reviewed)abstract
    • The mean-lifetimes, tau, of various medium-spin excited states in Pd-103 and Cd-106,Cd-107 have been deduced using the Recoil Distance Doppler Shift technique and the Differential Decay Curve Method. In Cd-106, the mean-lifetimes of the I-pi=12(+) state at E-x=5418 keV and the I-pi=11(-) state at E-x=4324 keV have been deduced as 11.4(17)ps and 8.2(7)ps, respectively. The associated beta(2) deformation within the axially-symmetric deformed rotor model for these states are 0.14(1) and 0.14(1), respectively. The beta(2) deformation of 0.14(1) for the I-pi=12(+) state in Cd-106 compares with a predicted beta(2) value from total Routhian surface (TRS) calculations of 0.17. In addition, the mean-lifetimes of the yrast I-pi = 15(-)/2 states in Pd-103 (at E-x=1262 keV) and Cd-107 (at E-x=1360 keV) have been deduced to be 31.2(44)ps and 31.4(17)ps, respectively, corresponding to beta(2) values of 0.16(1) and 0.12(1) assuming axial symmetry. Agreement with TRS calculations are good for Pd-103 but deviate for that predicted for Cd-107.
  •  
7.
  • Ashley, S. F., et al. (author)
  • Lifetime determination of excited states in Cd-106
  • 2007
  • In: Acta Physica Polonica B. - 0587-4254 .- 1509-5770. ; 38:4, s. 1385-1388
  • Journal article (peer-reviewed)abstract
    • Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps.
  •  
8.
  • Grodner, E., et al. (author)
  • Hindered Gamow-Teller Decay to the Odd-Odd N=Z 62Ga: Absence of Proton-Neutron T=0 Condensate in A=62
  • 2014
  • In: Physical Review Letters. - 1079-7114. ; 113:9
  • Journal article (peer-reviewed)abstract
    • Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T=1, Jπ=0+ ground state of Ge62 into excited states of the odd-odd N=Z nucleus Ga62. The experiment is performed at GSI Helmholtzzentrum für Schwerionenforschung with the Ge62 ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T1/2=82.9(14) ms is measured for the Ge62 ground state. Six excited states of Ga62, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical predictions of the interacting shell model and the quasiparticle random phase approximation. The absence of any sizable low-lying Gamow-Teller strength in the reported beta-decay experiment supports the hypothesis of a negligible role of coherent T=0 proton-neutron correlations in Ga62.
  •  
9.
  • Molina, F., et al. (author)
  • Tz=-1 → 0 β-Decays of 54Ni, 50Fe, 46Cr, and 42Ti and Comparison With Mirror (3He,t) Measurements
  • 2015
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:1
  • Journal article (peer-reviewed)abstract
    • We have studied the β decay of the Tz=−1, f7/2 shell nuclei Ni54, Fe50, Cr46, and Ti42 produced in fragmentation reactions. The proton separation energies in the daughter Tz=0 nuclei are relatively large (≈4–5 MeV) so studies of the γ rays are essential. The experiments were performed at GSI as part of the Stopped-beam campaign with the RISING setup consisting of 15 Euroball Cluster Ge detectors. From the newly obtained high precision β-decay half-lives, excitation energies, and β branching ratios, we were able to extract Fermi and Gamow-Teller transition strengths in these β decays. With these improved results it was possible to compare in detail the Gamow-Teller (GT) transition strengths observed in beta decay including a sensitivity limit with the strengths of the Tz=+1 to Tz=0 transitions derived from high resolution (3He,t) reactions on the mirror target nuclei at RCNP, Osaka. The accumulated B(GT) strength obtained from both experiments looks very similar although the charge exchange reaction provides information on a broader energy range. Using the “merged analysis” one can obtain a full picture of the B(GT) over the full Qβ range. Looking at the individual transitions some differences are observed, especially for the weak transitions. Their possible origins are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (9)
Type of content
peer-reviewed (8)
other academic/artistic (1)
Author/Editor
Gelletly, W. (4)
Cakirli, R. B. (4)
Regan, P. H. (3)
Williams, E. (2)
Xiang, Y. (2)
Rubio, B (2)
show more...
Benlliure, J (2)
Domingo-Pardo, C (2)
Jones, E. (2)
Kurz, N (2)
Rabe, B. (2)
Clark, R M (2)
Valiente-Dobón, J. J ... (2)
Algora, A. (2)
Boutachkov, P. (2)
Erduran, M.N. (2)
Gadea, A. (2)
Gerl, J. (2)
Rudolph, Dirk (2)
Pietri, S. (2)
Rainovski, G. (2)
Wollersheim, H.J. (2)
Zamfir, N.V. (2)
Doornenbal, P. (2)
Werner, V. (2)
Podolyak, Zs. (2)
Gorska, M. (2)
Molina, F. (2)
Morales, A. I. (2)
Verma, S. (2)
Casten, R. F. (2)
Anderson, R F (2)
McCutchan, E. A. (2)
Caceres, L. (2)
Andersson, P. S. (2)
Andgren, Karin (2)
Ganioğlu, E. (2)
Ashley, S. F. (2)
Amon, L. (2)
Gurdal, G. (2)
Keyes, K. L. (2)
Meyer, D. A. (2)
Papenberg, A. (2)
Plettner, C. (2)
Ribas, R. V. (2)
Vinson, J. (2)
Warner, D. D. (2)
Bauch, D. (2)
Rember, R. (2)
Newton, R (2)
show less...
University
Stockholm University (3)
Lund University (3)
University of Gothenburg (2)
Umeå University (2)
Royal Institute of Technology (2)
Swedish University of Agricultural Sciences (2)
show more...
Uppsala University (1)
Luleå University of Technology (1)
Linköping University (1)
Karolinska Institutet (1)
Swedish Museum of Natural History (1)
show less...
Language
English (9)
Research subject (UKÄ/SCB)
Natural sciences (8)
Medical and Health Sciences (1)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view