SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andrén Per E. Professor 1957 ) srt2:(2020)"

Search: WFRF:(Andrén Per E. Professor 1957 ) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Källback, Patrik, et al. (author)
  • Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers
  • 2020
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:21, s. 14676-14684
  • Journal article (peer-reviewed)abstract
    • Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an established tool in drug development, which enables visualization of drugs and drug metabolites at spatial localizations in tissue sections from different organs. However, robust and accurate quantitation by MALDI-MSI still remains a challenge. We present a quantitative MALDI-MSI method using two instruments with different types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin reuptake inhibitor, in mouse brain tissue sections. Six different methods for applying calibration standards and an internal standard were evaluated. The optimized method was validated according to authorities' guidelines and requirements, including selectivity, accuracy, precision, recovery, calibration curve, sensitivity, reproducibility, and stability parameters. We showed that applying a dilution series of calibration standards followed by a homogeneously applied, stable, isotopically labeled standard for normalization and a matrix on top of the tissue section yielded similar results to those from the reference method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The validation results were within specified limits and the brain concentrations for TOF MS (51.1 +/- 4.4 pmol/mg) and FTICR MS (56.9 +/- 6.0 pmol/mg) did not significantly differ from those of the cross-validated LC-MS/MS method (55.0 +/- 4.9 pmol/mg). The effect of in vivo citalopram administration on the serotonin neurotransmitter system was studied in the hippocampus, a brain region that is the principal target of the serotonergic afferents along with the limbic system, and it was shown that serotonin was significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic acid was not. This study makes a substantial step toward establishing MALDI-MSI as a fully quantitative validated method.
  •  
2.
  • Shariatgorji, Mohammadreza, et al. (author)
  • Bromopyrylium Derivatization Facilitates Identification by Mass Spectrometry Imaging of Monoamine Neurotransmitters and Small Molecule Neuroactive Compounds
  • 2020
  • In: Journal of the American Society for Mass Spectrometry. - : AMER CHEMICAL SOC. - 1044-0305 .- 1879-1123. ; 31:12, s. 2553-2557
  • Journal article (peer-reviewed)abstract
    • Mass spectrometry imaging using matrix-assisted laser desorption/ionization and desorption electrospray ionization has recently been employed to investigate the distribution of neurotransmitters, including biogenic amines and amino acids, directly in brain tissue sections. Ionization is facilitated by charge-tagging through pyrylium derivatization of primary amine containing neurotransmitters directly in tissue sections, significantly improving the limit of detection. Since the derivatization adds carbon and hydrogen to the target compounds, the resulting isotopic patterns of the products are not distinctive from those of the nonderivatized species. Here, we describe an approach for chemically modifying the reactive pyrylium ion to introduce the distinct isotopic signature of bromine in mass spectra of chemically derivatized substances in tissue sections. The method enables monoamine compounds to be distinguished directly in tissue sections, facilitating their identification.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view